Читаем Камень, ножницы, теорема. Фон Нейман. Теория игр полностью

Джон фон Нейман за чаепитием с выпускниками в Институте перспективных исследований Принстона (IAS) в ноябре 1947 года.

Бюст фон Неймана в Будапеште.

В 1944 году Оскар Моргенштерн (на фото) и Джон фон Нейман выпустили совместную работу Theory of Games and Economic Behavior («Теория игр и экономическое поведение·).



В1

В2


А1

9

-3


А2

-2

14


Эта матрица показывает, что если игрок А выберет первую стратегию, а игрок В — вторую, то первый потеряет 3, а второй выиграет 3, и так далее для остальных ячеек.

Этот способ представления игры для двух человек с нулевой суммой в виде двойной таблицы фон Нейман назвал сведением к нормальной форме игры.

Разумеется, таблицы, приведенные выше, могут относиться только к очень простым играм, но это не означает, что их нельзя применить и к таким сложным, как шахматы, хотя в этом случае таблица была бы огромной. Но важны не размеры таблицы, а то, что игры такого типа можно привести к нормальной форме.

Предшественником фон Неймана в моделировании игр был французский математик Эмиль Борель (1871-1956), опубликовавший с 1921 по 1927 год серию работ по теории игр, целью которых было установить выигрышные стратегии вне зависимости от фактора удачи или психологического состояния игроков в момент принятия решений. Несмотря на то что их работы в чем-то схожи, фон Нейман всегда утверждал, что проводил свои исследования совершенно независимо от Бореля. Можно с точностью сказать, что математические результаты фон Неймана имеют более общий характер и отвечают на такие ключевые вопросы, которые никогда даже не поднимались в работах Бореля. Тем не менее некоторые ученые отстаивают важность его вклада и, говоря об этой схеме, называют ее теорией Бореля — Неймана.



ПЕРВАЯ ТЕОРЕМА О МИНИМАКСЕ

Для того чтобы установить выигрышную стратегию в игре, игроки должны отвечать двум требованиям.

1. Они оба должны быть рациональными.

2. Они оба должны выбирать свои стратегии, ориентируясь исключительно на личную выгоду.

Теперь представим, что игроки А и В участвуют в игре со следующей платежной матрицей.


В1

В2

B3


А1

-5

0

-2


А2

1

-3

-2


A3

3

8

-1


Она содержит три возможных выбора для каждого игрока. Предположим, что числа обозначают выигрыши или проигрыши в евро. Следовательно, речь идет об игре с нулевой суммой в ее нормальной форме. Проанализируем возможные стратегии игроков. Допустим, В выбирает первую стратегию. В таком случае лучшим вариантом для А будет третья стратегия: с ней он заработает 3 евро, тогда как с первой потеряет 5, а со второй выиграет всего 1. Если же В выберет вторую стратегию, то А тоже будет лучше следовать третьему варианту, так как он позволяет заработать больше всего. Наконец, если В выберет третью стратегию, то А проиграет в любом случае, но его проигрыш составит только 1 евро. Следовательно, для А лучшей стратегией, безусловно, будет третья, вне зависимости от выбора В.

У игрока В немного другая ситуация. Если А выберет первую стратегию, наилучшим вариантом будет В1. В случае А2, разумеется, следует выбрать В2, а в случае A3 В должен выбрать третью стратегию, так как с ней он потеряет меньше всего. При этом В не имеет ни малейшего понятия о том, как поступит А, и тем не менее он должен сделать свой выбор. Именно в этот момент строится следующее предположение: «А — рациональный игрок, и лучший вариант для него — A3; в этом случае ВЗ будет для меня выгоднее всего, и значит, я последую этой стратегии». Игрок В знает, что в противном случае он проиграет, и пытается свести этот риск к минимуму.

Исследуя эту схему, фон Нейман сделал следующее замечание: на каждой строке всегда есть число меньше остальных двух. Он назвал его минимальным значением. Например, в предыдущей таблице в первой строке стоят числа -5, 0, -2. Самое маленькое из них -5. Таким же образом, минимальное значение для второй строки -3, для третьей —1. Фон Нейман взял самое большое из этих трех чисел, —1 (из всех трех вариантов оно является минимальным проигрышем), и назвал его максимином.

Затем он проделал то же самое для столбцов, но наоборот. Найдем самое большое, то есть максимальное, число в каждом столбце. В первом это будет 3, во втором 8, в третьем -1. Теперь определим самое маленькое из них, минимакс, которым в этом случае будет -1. Таким образом, в этой игре максимин и минимакс совпали в -1. И не случайно, ведь именно это и утверждается в теореме фон Неймана: «В большинстве игр с двумя участниками и нулевой суммой максимин всех строк всегда совпадает с минимаксом столбцов», и оно будет значением игры при оптимальной стратегии для обоих игроков.

Перейти на страницу:

Похожие книги

Адмирал Ее Величества России
Адмирал Ее Величества России

Что есть величие – закономерность или случайность? Вряд ли на этот вопрос можно ответить однозначно. Но разве большинство великих судеб делает не случайный поворот? Какая-нибудь ничего не значащая встреча, мимолетная удача, без которой великий путь так бы и остался просто биографией.И все же есть судьбы, которым путь к величию, кажется, предначертан с рождения. Павел Степанович Нахимов (1802—1855) – из их числа. Конечно, у него были учителя, был великий М. П. Лазарев, под началом которого Нахимов сначала отправился в кругосветное плавание, а затем геройски сражался в битве при Наварине.Но Нахимов шел к своей славе, невзирая на подарки судьбы и ее удары. Например, когда тот же Лазарев охладел к нему и настоял на назначении на пост начальника штаба (а фактически – командующего) Черноморского флота другого, пусть и не менее достойного кандидата – Корнилова. Тогда Нахимов не просто стоически воспринял эту ситуацию, но до последней своей минуты хранил искреннее уважение к памяти Лазарева и Корнилова.Крымская война 1853—1856 гг. была последней «благородной» войной в истории человечества, «войной джентльменов». Во-первых, потому, что враги хоть и оставались врагами, но уважали друг друга. А во-вторых – это была война «идеальных» командиров. Иерархия, звания, прошлые заслуги – все это ничего не значило для Нахимова, когда речь о шла о деле. А делом всей жизни адмирала была защита Отечества…От юности, учебы в Морском корпусе, первых плаваний – до гениальной победы при Синопе и героической обороны Севастополя: о большом пути великого флотоводца рассказывают уникальные документы самого П. С. Нахимова. Дополняют их мемуары соратников Павла Степановича, воспоминания современников знаменитого российского адмирала, фрагменты трудов классиков военной истории – Е. В. Тарле, А. М. Зайончковского, М. И. Богдановича, А. А. Керсновского.Нахимов был фаталистом. Он всегда знал, что придет его время. Что, даже если понадобится сражаться с превосходящим флотом противника,– он будет сражаться и победит. Знал, что именно он должен защищать Севастополь, руководить его обороной, даже не имея поначалу соответствующих на то полномочий. А когда погиб Корнилов и положение Севастополя становилось все более тяжелым, «окружающие Нахимова стали замечать в нем твердое, безмолвное решение, смысл которого был им понятен. С каждым месяцем им становилось все яснее, что этот человек не может и не хочет пережить Севастополь».Так и вышло… В этом – высшая форма величия полководца, которую невозможно изъяснить… Перед ней можно только преклоняться…Электронная публикация материалов жизни и деятельности П. С. Нахимова включает полный текст бумажной книги и избранную часть иллюстративного документального материала. А для истинных ценителей подарочных изданий мы предлагаем классическую книгу. Как и все издания серии «Великие полководцы» книга снабжена подробными историческими и биографическими комментариями; текст сопровождают сотни иллюстраций из российских и зарубежных периодических изданий описываемого времени, с многими из которых современный читатель познакомится впервые. Прекрасная печать, оригинальное оформление, лучшая офсетная бумага – все это делает книги подарочной серии «Великие полководцы» лучшим подарком мужчине на все случаи жизни.

Павел Степанович Нахимов

Биографии и Мемуары / Военное дело / Военная история / История / Военное дело: прочее / Образование и наука