Этот результат, известный как первая теорема о минимаксе, был опубликован в статье 1928 года Ж теории стратегических игр». В ней фон Нейман заложил общие основы будущей теории игр. Важно подчеркнуть еще раз: для того чтобы удовлетворить условиям теоремы фон Неймана, оба игрока должны быть рациональными, заботиться исключительно о собственных интересах и очень тщательно анализировать свои возможные стратегии. Эти критерии выполняются не во всех играх. Например, если один из игроков — природа, то в силу вступают произвольные факторы, и этот противник, разумеется, не осуществляет никакого анализа.
Кимура
Северный маршрут
Южный маршрут
Кенни
Северный маршрут
2
2
Южный маршрут
1
3
Джон фон Нейман
Логично было бы ожидать от ученого, решившего исследовать теоретические загадки игр, выбора в качестве модели шашек или шахмат. Фон Нейман был очень хорошо знаком с этими играми еще с детства. И тем не менее в статье 1928 года, в которой он доказал теорему о минимаксе, приводится тщательный анализ игры в... покер. Широко известно, что фон Нейман очень любил эту игру, хотя не всегда добивался в ней больших успехов. По его мнению, самым интересным аспектом покера был блеф, который делал выбор стратегии еще более сложным. В покере гораздо труднее математически установить оптимальную стратегию по сравнению с играми с двумя участниками и нулевой суммой. Несмотря на это фон Нейман придумал упрощенный вариант покера, который позволил ему включить эту игру в свои исследования.
СЕДЛОВЫЕ ТОЧКИ
Представим, что игроки А и В участвуют в игре со следующей платежной матрицей.
В1
В2
вз
А1
-3
-1
4
А2
3
0
1
A3
3
-1
-4
Когда игрок А выбирает стратегию 1, максимальный проигрыш имеет место, если стратегию 1 выберет и игрок В. Для А это означает потерю -3, что выделено жирным шрифтом в таблице ниже.
В1
В2
В3
А1
-3
-1
4
-3
А2
3
0
1
0
A3
3
-1
-4
-4
3
0
4