В мемориальной статье Эйнштейн рассказал еще об одной идее Кельвина, имеющей прямое отношение к капле. Кельвин заинтересовался следующим вопросом: как зависит давление пара жидкости вблизи поверхности от степени ее искривленности? Если рассуждать предметно, то речь идет о том, насколько отличается давление пара вблизи изогнутой поверхности водяной капли от давления пара вблизи плоской поверхности воды, налитой в широкое блюдце. В поисках ответа па этот вопрос Кельвин рассуждал так. Допустим, что в сосуд с жидкостью погружена тонкая трубка, внутренний радиус которой
Таков результат первого этапа рассуждений Кельвина.
Второй этап — естественное продолжение первого. Над всей поверхностью жидкости — и той, которая в трубке, и той, которая в широком сосуде,— имеется пар этой жидкости, однако не везде давление, оказываемое им на жидкость, одинаково: несколько большим оно будет над поверхностью жидкости в трубке, так как слой пара над ней толще на величину
По поводу этой формулы Эйнштейн заметил, что она действительна «независимо от того, какими причинами обусловлено возникновение кривизны поверхности».
Можно понять восхищение, испытанное Эйнштейном, когда он ознакомился с логикой рассуждений и формулой Кельвина. Ведь, казалось бы, Кельвин обсуждал совсем частный пример: широкий сосуд, в нем жидкость, в жидкости капилляр и т. д. А пришел к закону природы огромной важности и выразил его формулой, в которой ничего не содержится от того частного примера, который обсуждался. Разве что только
того, чтобы получить участок изогнутой поверхности, ограничивающей жидкость.
Вспомним о капле — она вся ограничена изогнутой поверхностью, и значит, давление пара вблизи нее будет повышено на величину, определяемую формулой Кельвина: чем меньше радиус капли, тем большее давление пара над ней. В этом легко убедиться с помощью многих опытов — далее мы с ними еще встретимся, а здесь, вместе с Эйнштейном, восхитимся талантом Кельвина — его проницательным умом и великолепной логикой.
Капля пустоты
Много лет подряд вместе с моим покойным учителем Борисом Яковлевичем Пинесом мы занимались изучением пористых кристаллических тел. Так случилось, что я ни разу не спросил, как у него возникло представление о капле пустоты — поре в кристалле. А сейчас, к сожалению, спросить уже некого и остается лишь строить догадки, сопоставляя факты и отрывки случайных разговоров.
Образ капли пустоты прочно вошел в физику твердого тела, о нем вспоминают всякий раз, когда надо осмыслить поведение различных дефектов в кристалле. И я расскажу о том, как этот образ возник. На примере рождения образа капли пустоты можно проследить, как вяжется логическое кружево мысли ученого, где сосуществуют и конкурируют фантазия и строгая формальная логика.