Можно рассказать об этом по-другому. Выпуклая поверхность капли создает давление, которое прижимает ее к плоскости. Это так называемое капиллярное (лапласовское) давление — мы уже с ним встречались. Участок же поверхности капли, который граничит с твердой подложкой, такого давления не создает: оно должно быть пропорциональным 1/
поверхности капли равен бесконечности, и, значит, давление равно нулю. К одному участку поверхности давление приложено, к другому — не приложено, а это неудобно. Капля, подвешенная в невесомости, таких неудобств не испытывает.
Два разных рассказа об одном и том же явлении можно проиллюстрировать двумя опытами. Опыт первый иллюстрирует первый рассказ, опыт второй — второй.
Опыт первый. На полированной поверхности стеклянной пластинки, сухой и чистой, располагается тонкий лепесток полимерной пленки. Хорошо, если его толщина будет не более 5 микрон. На поверхность лепестка надо посадить каплю воды и наблюдать за происходящим. Капля начнет изгибать пленку, стремясь завернуться в нее. Отчетливо это иллюстрирует кинограмма. Работает при этом та сила, которая на рисунке обозначена жирной стрелкой. Если бы полимерная пленка абсолютно подчинялась воле капли, произошло бы следующее: капля приняла бы форму сферы, равномерно покрыв себя слоем полимерной пленки. В действительности же, так как плоская пленка не может приобрести сферическую форму, капле не удается полностью в нее завернуться, но все же устраивается она при этом более удобно, чем на плоской поверхности.
Стремление капли завернуться в пленку мы объяснили, сославшись на силу, изображенную жирной стрелкой. Можно и в иных словах и понятиях описать процесс, за печатленный на кинограмме, смонтированной из кадров фильма, в котором заснята кинетика заворачивания водяной капли в пленку. Из рисунка следует, что 21 + 10• cos = а20 . Так как cos >= 0 , то 21 < 20 и, следовательно, заведомо меньше, чем сумма 10 + 20 . Это означает, что выгодно вместо двух свободных поверхностей капли и пленки создать одну поверхность, вдоль которой капля и пленка соприкасаются. А для этого капле следует в пленку завернуться, что она и делает.
Внимательно присмотритесь к каплям, которые после дождя остались на поверхности тонких листиков, и вы увидите, что вблизи капель листики изогнуты значительно больше, чем это могло бы произойти лишь под влиянием их веса. Капли явно готовили себе «постель» поудобнее.
Опыт второй был поставлен чешскими физиками. На полированную поверхность массивного кристалла железа наносилась капля расплавленного свинца. Железо было раскалено до температуры более 1000° С, и поэтому свинцовая капля оставалась жидкой. Кристалл железа — не полимерная пленка, и изогнуть его вокруг себя капля не может. Поэтому поступает она иным способом: выкапывает под собой ямку такой формы, чтобы вдоль контуров капли все три силы скомпенсировались так, как показано на рисунке. Эта «удобная» ямка должна иметь такую фор-
му, чтобы давление, обусловленное изогнутой поверхностью жидкий свинец — воздух, было в точности равно тому давлению, которое обусловлено искривленностью поверхности жидкий свинец — твердое железо, т. е. дна ямки.
Равенство двух этих давлений означает, что 10/
Выкопав под собой ямку, капля как бы перенеслась в невесомость — как и в невесомости, капиллярное давление оказалось одинаковым вдоль всей поверхности, ограничивающей каплю.
Естественно возникает вопрос: каким образом капля выкопала ямку? Ответим на него. Вначале, когда капля была расположена на плоской поверхности железа, она прижималась к нему тем давлением, которое обусловлено искривленностью поверхности свинец — воздух. Под влиянием этого давления железо из-под свинцовой капли перемещалось в области вокруг нее. Перемещалось в процессе диффузии поатомно, атом за атомом — опыт ставился при высокой температуре, когда диффузия в железе происходит достаточно активно.
Надо подчеркнуть, что в описанном опыте капиллярное давление, которое обусловливает перемещение железа из-под свинцовой капли, существенно больше давления, обусловленного ее весом, так как капля свинца была очень «маленькая» в том смысле, в каком мы об этом говорили в очерке об опыте Плато.