Читаем Капля полностью

Борис Яковлевич не очень был склонен к аналогиям, упрощенным моделям, картинам, иллюстрирующим мысль. Он часто повторял, что картина — образование дву­мерное и, следовательно, неглубокое. Аналогия может появиться позже, а вначале должна быть формула, числен­ная оценка. И еще, посмеиваясь, он любил говорить о том, что иных формулы гипнотизируют, поскольку формула — это математика, а математика, как известно, наука точ­ная. Это преувеличенное почтение к формулам обычно испытывают люди, которые никогда не создавали их и поэтому не чувствуют ни их слабостей, ни таящихся в них возможностей.

Первая работа Бориса Яковлевича, посвященная изуче­нию поведения пор в кристаллах (она появилась еще в 1946 году), начинается с анализа давно известной формулы лорда Кельвина, которая устанавливает связь между давлением пара вблизи изогнутой поверхности капли ( Р R ), ее радиусом ( R ) и давлением пара вблизи плоской поверхности жидкости, из которой капля состоит ( Р0 ). Вот эта формула:

В нее входят величины поверхностного натяжения ( ), объема, приходящегося на один атом в жидкости ( ), тем­пературы ( Т ) и некоторая постоянная величина к , так на­зываемая постоянная Больцмана.

 

Легко заметить, что в формуле Кельвина нет ничего спе­цифически «жидкого» и ее можно применять и к твердым закристаллизовавшимся каплям. Надо только при этом помнить, что поверхностное натяжение зависит от ориен­тации кристаллографических плоскостей, охраняющих застывшую каплю. Но это деталь, а в главном формула применима к твердым кристаллическим каплям. Из фор­мулы следует, что, чем меньше капля, т. е. чем меньше ее радиус, тем на большую величину давление пара вблизи ее поверхности превосходит давление пара вблизи плоской поверхности вещества, из которого капля состоит.

Понять это легко. Ведь что означают слова «упругость пара больше» или «упругость пара меньше»? Они означают, что при прочих равных условиях в газе вблизи поверх­ности будет большая или меньшая концентрация атомов вещества капли. Атом, который расположен на искривлен­ной поверхности капли, имеет меньшее число соседей, чем  тот, который расположен на плоской. В случае предельно маленькой капли, состоящей из одного атома, этот атом и находился бы па «поверхности» в единственном числе, вообще не имея соседей. Капля из одного атома, конечно же, никакая не капля, но эта условность помогает почув­ствовать тенденцию: чем меньше капля, тем меньше сосе­дей у атома, сидящего на ее поверхности. А меньше сосе­дей — меньше связей, удерживающих атом на поверхности, меньше связей — легче оторваться, легче оторваться — большее число атомов это совершит, и следовательно, боль­шая их концентрация будет в газе вблизи поверхности. Именно это строго и описывает формула.

Борис Яковлевич прочел эту формулу по-своему, не­ожиданно и формально очень строго. Он обратил внима­ние на то, что она примечательна не только теми величи­нами, которые входят в нее, но и теми, которые в ней отсутствуют. Из величин, характеризующих вещество капли, в формулу входят лишь поверхностная энергия и объем, приходящийся на один атом. Масса атома не входит. Формально это означает, рассуждал он, что формула го­дится для вещества с любой массой атома, от бесконечной до равной нулю. Бесконечная масса — это по ту сторону разумного, а вот о «веществе» с нулевой массой «атома» можно говорить вполне серьезно, не забывая, однако, о кавычках. Таким «веществом» является пустота.

Несколько странное соседство слов «вещество» и «пу­стота». В действительности имеется в виду не «вещество», а отсутствие вещества. Например, в узле кристаллической решетки нет атома, которому следовало бы в этом узле быть. Этот свободный от атома узел можно назвать «ато­мом пустоты», а физики его иногда называют «вакансией». Очевидно, скопление большого количества «атомов пу­стоты» должно образовать «каплю пустоты», т. е. пору. Все это по аналогии с реальными атомами и реальным ве­ществом: скопление большого количества, скажем, атомов железа, образует каплю железа. Разумеется, при темпе­ратуре более высокой, чем температура плавления железа.

Итак, пустой узел в кристаллической решетке — «атом пустоты», пора в кристалле — «капля пустоты», и они должны подчиняться формуле, которая впервые была написана более 100 лет назад и применительно к «капле пустоты» впервые прочтена Борисом Яковлевичем Пи­несом.

Теперь о следствиях нового прочтения формулы. И не о  всех, а о самом главном, ради которого стоило присталь­но всмотреться в старую формулу и заново ее прочесть.

 

Перенос жидкости из капли в блюдце

 

Капля пустоты (пора) испаряется в кристалл. Вблизи поры много вакансий (зачерненные кружки), вдали — мало

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука