Мораль истории такова: любой ценой предоставьте сильным возможность сражаться друг с другом.
У нас есть три ящика с табличками «яблоки», «апельсины», «яблоки и апельсины», и мы можем достать фрукт из одного из них.
Давайте проанализируем возможные варианты развития событий. Предположим, мы достали фрукт из ящика с табличкой «яблоки». Если это яблоко, мы понимаем, что здесь должны быть яблоки и апельсины. В этом ящике не могут храниться одни яблоки, поскольку таблички не соответствуют содержимому, а на табличке написано «яблоки». Остаются два ящика с табличками «апельсины» и «яблоки и апельсины» и два возможных содержимых: только апельсины и только яблоки. В ящике с табличкой «апельсины» не могут быть апельсины, поскольку таблички не соответствуют содержимому, значит, в нем яблоки. Остается ящик «яблоки и апельсины» с апельсинами – и мы правильно определили содержимое всех ящиков.
Ура! Похоже, мы решили задачу. Однако это не так. Поскольку наша стратегия сводится к выбору фрукта из ящика с табличкой «яблоки», есть вероятность, что им окажется апельсин. А если мы достанем апельсин из ящика с табличкой «яблоки», то можем решить, что в нем находятся либо апельсины, либо яблоки и апельсины, а значит, не сможем определить, что именно. Точно так же если мы выберем фрукт из ящика с табличкой «апельсины», то есть вероятность, что достанем яблоко и, следовательно, не сможем узнать, что в ящике – яблоки или яблоки и апельсины.
Решение заключается в том, чтобы выбрать фрукт из ящика с табличкой «яблоки и апельсины». В действительности вы, возможно, уже пришли к этому выводу и без представленных выше рассуждений. Если в головоломке есть единственное решение на основе выбора из трех вариантов, два из которых взаимозаменяемы (как «яблоки» и «апельсины»), то оно должно быть получено в результате выбора варианта, отличного от остальных.
Так что достаем фрукт из ящика с табличкой «яблоки и апельсины». Если это яблоко, нам понятно, что в ящике только яблоки. Остаются ящики с табличками «яблоки» и «апельсины», то есть ящик с апельсинами и ящик с яблоками и апельсинами. В ящике с табличкой «апельсины» не могут быть только апельсины, а значит, он с яблоками и апельсинами. Следовательно, в ящике с табличкой «яблоки» находятся апельсины. Вот так можно правильно развесить таблички на всех ящиках. То же самое мы могли бы сделать и в случае, если бы фруктом, который мы достали из ящика с табличкой «яблоки и апельсины», оказался апельсин, поскольку рассуждали бы аналогичным образом, только заменив яблоки на апельсины.
Сначала нам необходимо установить, кто этот мужчина. Похоже, что наиболее вероятный кандидат – Сид. Но этот путь приведет нас к противоречию. В задаче сказано, что у этого мужчины нет в руках приправы. Если это Сид, то у него не может быть и соли из-за его фамилии, а значит, у него должен быть перец. Зато у Риза не может быть перца, как, впрочем, и соли, поскольку во время диалога он отвечает тому, у кого она есть. Следовательно, у Риза тоже должен быть перец, а это противоречие.
Так этот мужчина – Фил? Фил – мужское имя! Мы снова столкнулись с противоречием. Судя по диалогу, он не человек с солью. Тогда, если тот мужчина – Фил, у него не может быть соли, так же как и перца, потому что название этой специи совпадает с его фамилией. Таким образом, у него должна быть приправа. Но в задаче говорится, что у мужчины нет приправы.
Методом исключения приходим к выводу, что этим мужчиной должен быть Риз. Поскольку у этого мужчины нет соли, значит, у Риза должен быть перец. А приправа должна быть у Сида, соль – у Фила.
(Если вам интересно, Сид – это уменьшительная форма имени Сидни, которое становится все более популярным женским именем, а Фил – уменьшительная форма имени Филиппа.)
Определить, как прошла игра, можно следующим образом. Проанализируем те шесть раз, когда Адам выбирает ножницы. Поскольку нам известно, что ничьих не бывает, на каждые шесть ножниц Ева выбирает либо камень, либо бумагу. Ева два раза выбирает камень и четыре – бумагу, из чего мы можем сделать вывод, что всякий раз, когда она называет либо камень, либо бумагу, Адам назвал ножницы. Ножницы Адама проигрывают два раза (камню) и выигрывают четыре раза (бумаге). Общий счет: Адам – 4, Ева – 2.
В оставшихся четырех сетах Ева каждый раз выбирает ножницы, а Адам три раз называет камень и один раз – бумагу. В этом случае счет такой: Адам – 3, Ева – 1.
Итоговый счет: Адам – 7, Ева – 3.
Адам побеждает.