Итак, у нас есть пять мужчин: Дженкинс, Томкинс, Перкинс, Уоткинс и Симкинс, для простоты – Д, Т, П, У и С. И есть пять женщин, которые являются матерями и женами конкретных мужчин, причем одна и та же женщина не может быть одновременно женой и матерью одного мужчины – любовь в Кинсдейле, конечно, странная, но не настолько. Давайте определим этих женщин по их родственным связям и обозначим эти связи строчными буквами:
Далее нарисуем таблицу, верхняя строка которой соответствует мужчинам, а нижняя – их женам, то есть сначала вторая строка пуста. Если Томкинс – пасынок Дженкинса, значит, миссис Дженкинс – мать Томкинса, поэтому можно вписать букву
Нам также известно, что Томкинс – отчим Перкинса, а это значит, что миссис Томкинс – мать Перкинса. Следовательно, под Т пишем
По условиям задачи, мать Перкинса – подруга миссис Уоткинс. Следовательно, мы знаем, что миссис Уоткинс не мать Дженкинса. Поскольку миссис Уоткинс не может быть матерью Уоткинса, методом исключения мы приходим к выводу, что она должна быть матерью Симкинса.
И наконец, сказано, что мать мужа миссис Уоткинс (то есть мать Уоткинса) – кузина миссис Перкинс. Следовательно, жена Перкинса не мать Уоткинса. Если жена Перкинса не мать Уоткинса, то она может быть только матерью Дженкинса. И снова методом исключения приходим к выводу, что жена Симкинса должна быть матерью Уоткинса.
Таким образом, получается, что пасынок Симкинса – Уоткинс.
Это табличная головоломка, поэтому рисуем таблицу. По условиям задачи, у нас есть пять домов и пять свойств, так что таблица должна выглядеть так, как показано ниже. Мы будем заполнять пустые ячейки, анализируя одно утверждение за другим.
Утверждение 9 гласит, что в среднем доме пьют молоко, поэтому мы можем записать слово
В утверждении 6 говорится, что зеленый дом и дом цвета слоновой кости находятся по соседству. Следовательно, первый дом не может быть зеленым или цвета слоновой кости. Однако первый дом не может также быть красным, поскольку, по утверждению 2, шотландец живет в красном доме, а нам известно, что в первом доме живет датчанин. Мы можем сделать вывод, что первый дом желтый. Как сказано в утверждении 8, его хозяин носит криперы, а из утверждения 12 нам известно, что во втором доме держат лошадь.
Что пьет датчанин? Не кофе, если верить утверждению 4, и не чай, согласно утверждению 5, и не молоко, по утверждению 9, и не апельсиновый сок – исходя из утверждения 13. Следовательно, датчанин должен пить воду.
А кто живет во втором доме? Не шотландец, потому что его дом синий, и не грек, так как он держит лошадь. Значит, либо боливиец, либо японец. Однако если это японец, то что он пьет? Не воду, не молоко, не кофе (в силу утверждения 4) и не чай (в силу утверждения 5). Таким образом, японец должен пить апельсиновый сок. Но тогда, согласно утверждению 13, японец носит шлепанцы, что противоречит утверждению 14, которое гласит, что он носит вьетнамки. Следовательно, боливиец должен жить во втором доме, где он пьет чай.
По утверждению 6, зеленый дом и дом цвета слоновой кости находятся по соседству, а это значит, что красным может быть либо третий, либо пятый дом. Представим, что он пятый. В таком случае там живет шотландец, который, судя по утверждению 4, пьет апельсиновый сок и носит шлепанцы, как гласит утверждение 13. Но кто тогда носит броги и держит улиток, как говорится в утверждении 7? Не датчанин, который носит криперы, и не боливиец, который держит лошадь, и не грек, у которого, исходя из утверждения 3, есть собака, и не японец, который, по утверждению 14, носит вьетнамки. Получается, никто! Следовательно, мы можем сделать вывод, что третий дом – это красный дом шотландца, а значит, четвертый и пятый дома в силу утверждения 6 – это дом цвета слоновой кости и зеленый дом. Как сказано в утверждении 4, кофе пьют в пятом доме а значит, апельсиновый сок должны пить в четвертом. И, по утверждению 13, в четвертом доме носят шлепанцы.
Японец должен жить в пятом доме и носить вьетнамки, поскольку, в силу утверждения 14, он не может жить в четвертом доме, где должен жить грек со своей собакой.
Оставшаяся часть таблицы теперь заполняется автоматически: человеком, который носит броги и держит улиток, должен быть шотландец. Следовательно, боливиец носит сандалии, а, по утверждению 11, датчанин должен держать лису. В последнюю незаполненную ячейку мы вписываем зебру, ее держит японец.
Существуют и другие способы заполнить эту таблицу, но окончательный вариант всегда должен выглядеть именно так!
С чего же начать? Давайте еще раз сформулируем три утверждения.
1. Видевшие Калибана в зеленом галстуке не могут выбирать раньше Лоу.