Читаем Капуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления полностью

Эту задачу можно решить методом проб и ошибок. Можно также доказать следующее правило: чтобы нарисовать изображение, не отрывая карандаша от бумаги и не проводя карандашом по линии повторно, оно должно содержать не более двух точек, в которых сходится нечетное количество линий. Этому условию удовлетворяет только ответ E, поскольку на изображении вообще нет точек, в которых сходится нечетное количество линий, тогда как на других рисунках таких точек больше двух[38].

К тексту


6. б) 2.

Надеюсь, вы знаете хотя бы таблицу умножения на семь! В таком случае для вас не станет неожиданностью тот факт, что 35 делится на 7, а значит, и 350 000 делится на 7. На 7 делится также 49, и 4900. Поскольку 354 972 = 350 000 + 4900 + 72, остается только найти остаток от деления 72 на 7. Так как 7 × 10 = 70, остаток равен 2.

К тексту


7. в) 4.

В семье должно быть по меньшей мере два мальчика, поскольку если бы мальчик был только один, у него не было бы брата, что противоречит условиям задачи. Аналогично, в семье должно быть по меньшей мере две девочки, а значит, в семье минимум четверо детей.

К тексту


8. д) 9.

Просто выполните это забавное умножение на любом клочке бумаги – и задача решена.



К тексту


9. а) 3.

Надеюсь, на вашем листе бумаги еще осталось место. Впишите в пустые клетки пирамиды (начиная сверху и слева направо) буквы p, q, r; в правую крайнюю клетку в четвертом ряду s и в пятом ряду между клетками с числом 9 и буквой х – t. Вот необходимые вычисления:

p = 105 – 47 = 58;

q = p – 31 = 58–31 = 27;

r = 47 – q = 47–27 = 20;

s = r – 13 = 20–13 = 7;

t = 13 – 9 = 4;

х = s – t = 7–4 = 3.

К тексту


10. а) 2.

С моей стороны было бы неучтиво не включить задачу на деление в столбик, в результате чего получим поэтому десятичная дробь содержит только две разные цифры.

К тексту

Глава 1. Капуста, неверные мужья и зебра. Логические задачи

1. ВОЛК, КОЗА И КАПУСТА

Решить задачу с девятью переправами можно следующим образом. (Надо отметить, что, по условиям задачи, мужчин нельзя назвать джентльменами еще и потому, что женщины вынуждены грести по меньшей мере во время шести переправ – а может, и во время всех.) В целом стратегия такова: нужно взять первую пару, а затем вторую и третью и т. д. при условии, что братья всегда сходят на берег раньше сестер.



При более строгом соблюдении условий второй шаг недопустим, поскольку, когда сестра из первой пары вернется на левый берег, она окажется без сопровождения брата в присутствии мужчин, не состоящих с ней в родстве. В этом случае самое быстрое решение потребует одиннадцати переправ. Суть задачи о волке, козе и капусте состояла в том, что для переправы всего имущества через реку требовалось перевезти на другой берег один объект, затем вернуть его назад и снова перевезти. В данной задаче мы должны перевезти каждую сестру на другой берег, вернуть назад и снова переправить через реку.

Вот еще один из способов сделать это.



К тексту

2. ТРОЕ МУЖЧИН И ИХ СЕСТРЫ

Именно такое решение предложил Алкуин, оно же зашифровано в гекзаметре на латыни (в той версии, в которой пары состоят из мужа и жены). Вот примерный перевод этого гекзаметра.

Женщины, женщина, женщины, жена, мужчины, мужчина и жена,

Мужчины, женщина, женщины, мужчина, мужчина и жена.

К тексту

3. ПЕРЕХОД ЧЕРЕЗ МОСТ (С НЕБОЛЬШОЙ ПОМОЩЬЮ МОИХ ДРУЗЕЙ)

Стратегия, упомянутая мной в тексте, состоит в том, чтобы Джон, который ходит быстрее всех, перевел каждого из своих друзей через мост по одному. Джон переводит Пола за 2 минуты и возвращается за 1 минуту. Затем он переводит Джорджа за 5 минут и возвращается за 1 минуту. И наконец, переводит Ринго за 10 минут. Суммарное время составляет 2 + 1 + 5 + 1 + 10 = 19 минут.

Сначала эта стратегия кажется оптимальной без всяких доказательств. Почему бы не использовать каждый раз самого быстрого человека? Однако на самом деле целесообразнее собрать вместе двух человек, передвигающихся медленнее всех. Вот как это сделать:


1. Так же как и в предыдущем случае, Джон переводит Пола на другую сторону за 2 минуты и возвращается назад за 1 минуту.

2. Далее Джордж и Ринго переходят через мост вместе, что занимает у них 10 минут.

3. Они передают фонарь Полу, который возвращается по мосту, прибавив 2 минуты.

4. Джон и Пол совершают последний переход, потратив на это еще 2 минуты.


Суммарное время составляет 2 + 1 + 10 + 2 + 2 = 17 минут.

Эта головоломка превосходна, поскольку в ней действие, которое на первый взгляд кажется нерациональным (уменьшить участие Джона), на самом деле именно то, что нужно совершить. Такое решение вызывает восхищение.

Перейти на страницу:

Все книги серии МИФ. Кругозор

Захотела и смогла
Захотела и смогла

Поступить в актерскую школу в 69 лет и в 79 покорить Голливуд.Избавиться от лишнего веса и привести себя в идеальную физическую форму в 58.Стать финансовым брокером в 75 и заработать миллион.Начать успешную спортивную карьеру в 60.Стать моделью в 82.В этой книге собраны удивительные истории женщин, которые на собственном примере доказали, что реализовать свои менты возможно в любом возрасте.И все же эта книга не только для тех, кому сегодня за пятьдесят.Истории людей, нашедших свое счастье в возрасте за 60 или за 70 лет, невольно заставляют вспомнить о тех, кто несчастлив в 30, 40 или 20.Конечно, после пятидесяти наступает потенциально самый яркий и самый счастливый период нашей жизни.Но все же мне бы хотелось, чтобы и те, кто еще не достиг этого удивительного времени жизни, прочитав эту книгу, сказали себе:«Если это возможно в 60, значит, это возможно и в 30!»

Александр Мурашев , Владимир Егорович Яковлев , Ксения Сергеевна Букша , Татьяна Хрылова

Биографии и Мемуары

Похожие книги

Токсичные коллеги. Как работать с невыносимыми людьми
Токсичные коллеги. Как работать с невыносимыми людьми

Интересное руководство, которое поможет взаимодействовать с токсичными коллегами и восстанавливаться после вынужденного общения с ними.Многим на работе приходится иметь дело с людьми, общение с которыми вызывает огромный стресс, хотя они и не нарушают правила компании. Тесса Уэст описывает семь самых распространенных типов, с которыми мы сталкивались хотя бы раз в жизни:1. «Карьерист» заискивает перед начальством, но при этом абсолютно не уважает коллег.2. «Волк в овечьей шкуре» входит в доверие, но может подставить в любую минуту, принизив ваш вклад в общее дело и приписав успех проекта одному себе.3. «Халявщик» умеет удобно устроиться: ничего не делает, создает видимость работы и получает за это деньги.4. «Бульдозер», чья основная цель – продавить свое видение и навязать свои правила, даже если это противоречит интересам команды и компании.5. «Микроменеджер», не уважающий ваше личное пространство и время и привыкший контролировать всех, иногда в ущерб собственным обязанностям.6. «Газлайтер» нарочно искажает реальную картину, пытается «отменить» ваши чувства и создать собственную реальность, такую, какая нужна ему.7. «Нерадивый босс» сначала долгое время не обращает на вас внимания, затем начинает терзаться беспокойством из-за того, что не знает, что происходит, и в результате, чтобы избавиться от беспокойства, принимается душить контролем.Автор объясняет, почему люди становятся токсичными (на это часто есть глубокие психологические причины), и дает стратегии борьбы с поведением этих коллег.

Тесса Уэст

Карьера, кадры / Зарубежная деловая литература / Финансы и бизнес