Читаем Капуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления полностью

[3] A × B × C × D = ABCD = 100 000 000 abcd.

Но мы знаем, что abcd = 7,11. Значит:

[4] ABCD = 711 000 000.

Теперь у нас есть число, с которым мы можем работать. Основная теорема арифметики говорит нам, что произведение уникального набора простых множителей, то есть простых чисел, равно числу 711 000 000. Эти множители можно найти вручную или, что предпочтительнее, с помощью компьютера:

711 000 000 = 2 × 2 × 2 × 2 × 2 × 2 × 3 × 3 × 5 × 5 × 5 × 5 × 5 × 5 × 79.

Значит, ABCD = 2 × 2 × 2 × 2 × 2 × 2 × 3 × 3 × 5 × 5 × 5 × 5 × 5 × 5 × 79.

Таким образом, числа A, B, C, D состоят из простых чисел. Вопрос в том, как определить, произведение каких чисел дает значение A, произведение каких чисел равно значению B, произведение каких чисел образует C и произведение каких чисел равно D. Другими словами, как соотнести эти числа со значениями A, B, C, D?

Теперь вернемся к уравнению [2] и умножим его на 100, чтобы получить второе уравнение с A, B, C, D:

[5] 100a + 100b + 100c + 100d = A + B + C + D = 711.

То есть мы должны распределить приведенные выше простые числа между A, B, C и D так, чтобы их сумма составляла 711.

Плохо, что здесь нет короткого пути, – необходимо просто применить метод проб и ошибок. Предположим, например, что A = 2 × 2 × 2 × 2 × 2 × 2 = 64, B = 3 × 3 = 9, C = 5 × 5 × 5 × 5 × 5 × 5 = 15 625 и D = 79. В таком случае A + B + C + D = 15 777, а значит, мы сделали неправильный выбор.

Теперь решение задачи во многом зависит от удачи, но постепенно вы начнете понимать, какими именно должны быть значения A, B, C, D. Кроме того, вы можете сделать ряд предположений. У нас много пятерок, следовательно, два или три числа могут быть кратными пяти. В таком случае их сумма будет заканчиваться цифрой 0 или 5, а последнее число должно заканчиваться цифрой 6 или 1. Какое наименьшее кратное числа 79 заканчивается цифрой 6 или 1? Это 79 × 4 и, конечно же:


A = 79 × 2 × 2 = 316;

B = 5 × 5 × 5 = 125;

C = 5 × 3 × 2 × 2 × 2 = 120;

D = 5 × 5 × 3 × 2 = 150.


Таким образом, цены a, b, c, d – это 3,16; 1,25; 1,20; 1,50 фунта.

Красота этой головоломки не в довольно трудоемких операциях, выполненных методом проб и ошибок, а в том, как блестяще число 7,11 обеспечивает единственно возможное решение для каждой из четырех переменных.


К тексту

54. ТРИ КУВШИНА

Прочитайте решение задачи о бильярдном столе, описанное в разделе головоломки о трех кувшинах.


К тексту

55. ДВА ВЕДРА

Надеюсь, вы разобрались в задаче о бильярдном столе.

На первом рисунке показано, что произойдет, когда вы сделаете удар кием по шару в точке (7; 0), то есть сначала наполните ведро на 7 галлонов. Второй рисунок соответствует удару кием по шару из точки (0;5), то есть когда вы сначала наполните ведро на 5 галлонов. На первом рисунке шар совершает меньше отскоков, прежде чем попасть в бортик в точке с горизонтальной координатой 6, – так что это способ налить 6 галлонов воды за минимальное количество переливаний.



Координаты движения шара на первом рисунке, которые представляют количество галлонов в случае каждого переливания, таковы: (7; 0), (2; 5), (2; 0), (0; 2), (7; 2), (4; 5), (4; 0), (0; 4), (7; 4) и (6; 5). Следовательно, быстрее всего – налить 7 галлонов в первое ведро, оставив второе пустым, затем налить 5 галлонов во второе ведро, оставив в первом ведре 2 галлона, и так далее – до тех пор, пока в первом ведре не окажется 6 галлонов воды, а второе ведро не будет полным.


К тексту

56. ЗАДАЧА О КОФЕ С МОЛОКОМ

Предположим, в термосе 100 миллилитров кофе, а в чашке – 100 миллилитров молока. Допустим, мы налили 10 миллилитров кофе в молоко. Теперь в чашке с молоком 110 миллилитров.

Сейчас же прекратите!

Если взять произвольные значения, мы, конечно, сможем решить эту задачу, после того как все подсчитаем и обобщим полученный результат. Однако существует гораздо более быстрый и элегантный способ.

Во-первых, внесем ясность: смешивание двух жидкостей не меняет их химического состава. Общий объем кофе, как и молока, не изменится. В любом из сосудов та жидкость, что не является кофе, – это молоко, а та, что не является молоком, – кофе.

После двух переливаний жидкости в термосе остается столько же, сколько и в самом начале, просто теперь там есть определенный объем молекул кофе и определенный объем молекул молока. Куда же подевался недостающий объем кофе? Он остался в чашке, поскольку общий объем кофе не изменился. Таким образом, объем молока в термосе должен быть равен объему кофе в чашке. Размер термоса, чашки и количество жидкости, перелитой из одной емкости в другую, не имеют отношения к ответу.

Возможно, вам будет легче это понять на примере печенья и банок. В одной банке у нас шоколадное печенье, а в другой – кокосовое. Возьмите любое количество шоколадного печенья и положите его в банку с кокосовым. Затем достаньте из банки с кокосовым печеньем такое же количество печенья, которое теперь может быть разным, потому что печенье перемешалось, и положите его в банку с шоколадным печеньем.

Перейти на страницу:

Все книги серии МИФ. Кругозор

Захотела и смогла
Захотела и смогла

Поступить в актерскую школу в 69 лет и в 79 покорить Голливуд.Избавиться от лишнего веса и привести себя в идеальную физическую форму в 58.Стать финансовым брокером в 75 и заработать миллион.Начать успешную спортивную карьеру в 60.Стать моделью в 82.В этой книге собраны удивительные истории женщин, которые на собственном примере доказали, что реализовать свои менты возможно в любом возрасте.И все же эта книга не только для тех, кому сегодня за пятьдесят.Истории людей, нашедших свое счастье в возрасте за 60 или за 70 лет, невольно заставляют вспомнить о тех, кто несчастлив в 30, 40 или 20.Конечно, после пятидесяти наступает потенциально самый яркий и самый счастливый период нашей жизни.Но все же мне бы хотелось, чтобы и те, кто еще не достиг этого удивительного времени жизни, прочитав эту книгу, сказали себе:«Если это возможно в 60, значит, это возможно и в 30!»

Александр Мурашев , Владимир Егорович Яковлев , Ксения Сергеевна Букша , Татьяна Хрылова

Биографии и Мемуары

Похожие книги

Токсичные коллеги. Как работать с невыносимыми людьми
Токсичные коллеги. Как работать с невыносимыми людьми

Интересное руководство, которое поможет взаимодействовать с токсичными коллегами и восстанавливаться после вынужденного общения с ними.Многим на работе приходится иметь дело с людьми, общение с которыми вызывает огромный стресс, хотя они и не нарушают правила компании. Тесса Уэст описывает семь самых распространенных типов, с которыми мы сталкивались хотя бы раз в жизни:1. «Карьерист» заискивает перед начальством, но при этом абсолютно не уважает коллег.2. «Волк в овечьей шкуре» входит в доверие, но может подставить в любую минуту, принизив ваш вклад в общее дело и приписав успех проекта одному себе.3. «Халявщик» умеет удобно устроиться: ничего не делает, создает видимость работы и получает за это деньги.4. «Бульдозер», чья основная цель – продавить свое видение и навязать свои правила, даже если это противоречит интересам команды и компании.5. «Микроменеджер», не уважающий ваше личное пространство и время и привыкший контролировать всех, иногда в ущерб собственным обязанностям.6. «Газлайтер» нарочно искажает реальную картину, пытается «отменить» ваши чувства и создать собственную реальность, такую, какая нужна ему.7. «Нерадивый босс» сначала долгое время не обращает на вас внимания, затем начинает терзаться беспокойством из-за того, что не знает, что происходит, и в результате, чтобы избавиться от беспокойства, принимается душить контролем.Автор объясняет, почему люди становятся токсичными (на это часто есть глубокие психологические причины), и дает стратегии борьбы с поведением этих коллег.

Тесса Уэст

Карьера, кадры / Зарубежная деловая литература / Финансы и бизнес