Читаем Кентерберийские головоломки полностью

142. Головоломка с вешалками для шляп. Теперь я хочу представить головоломку с пятью ферзями, которую я в причудливом одеянии сформулировал в 1897 г. Поскольку тогда ферзи предстали в облике шляп, висящих на 64 вешалках, то я сохраняю ее название. На рисунке можно заметить, что каждая клетка либо занята, либо находится под угрозой нападения.

Требуется передвинуть одного ферзя на другую клетку так, чтобы каждая клетка все еще оставалась либо занятой, либо под угрозой; затем нужно передвинуть второго ферзя при том же условии, затем – третьего и, наконец, – четвертого. После того как будет передвинут четвертый ферзь, каждая клетка должна быть либо занята, либо находиться под ударом, но ни один ферзь не должен быть атакован другим ферзем. Разумеется, вы можете передвигать ферзей не обязательно «ходом ферзя», а просто переставлять их на любое место доски.

143. Амазонки. Эта головоломка основана на одной задаче, предложенной капитаном Тертоном. Передвиньте 3 ферзя на другие клетки так, чтобы на доске оказалось 11 клеток, не находящихся под угрозой нападения. Перемещения не обязательно должны совершаться «ходом ферзя». Вы можете переставлять ферзей, куда пожелаете. Существует только одно решение данной головоломки.

144. Головоломка с пешками. Поставьте две пешки в центр доски в позиции d4 и е5. Далее, разместите оставшиеся 14 пешек (всего 16) таким образом, чтобы никакие 3 пешки не располагались на одной прямой, идущей в любом направлении.

Обратите внимание, что я сознательно говорю о пешках, а не о ферзях, ибо здесь под прямыми понимаются не вертикали, горизонтали и диагонали, по которым ходит ферзь, а произвольные геометрические прямые; пешки же рассматриваются просто как геометрические точки, совпадающие с центром клетки, занятой данной пешкой.

145. Охота на льва. Мой друг капитан Потхэм Холл, знаменитый охотник, говорит, что нет ничего более захватывающего, чем столкновение со стадом – табуном – стаей (я добрую четверть часа вспоминал нужное слово, пока наконец не вспомнил) – с прайдом львов. Почему именно группа львов называется «прайдом», группа собак – «сворой», а группа тетеревов – «выводком», относится к тайнам филологии, в которые я здесь не буду вдаваться.

Так вот, капитан говорит, что если смелый лев пересечет ваш путь в пустыне, то ситуация становится острой, ибо лев обычно выслеживает человека так же, как и человек охотится за царем зверей. И когда они встречаются, между ними всегда происходит схватка. Некоторое размышление по поводу этой несчастной и искони длящейся кровной вражды навело меня на мысль подсчитать вероятность встречи человека со львом. Во всех подобных случаях приходится начинать с некоторых более или менее произвольных допущений, вот почему, подумалось мне, окажется полезным рисунок, на котором вы видите строго регулярные дорожки в пустыне. Хотя капитан уверяет меня, что пути львов обычно весьма близки к такому расположению, я в этом сильно сомневаюсь.

Головоломка состоит просто в том, чтобы выяснить, сколькими различными способами человека и льва можно поместить в два различных места, не расположенных на одной и той же тропе. Под «тропами» понимаются лишь указанные прямые. Так, за исключением угловых положений, каждый соперник находится на двух и не более тропах. Можно заметить, что имеется большой простор для того, чтобы они избежали друг друга з пустыне; мы всегда понимаем это обстоятельство.

146. Защита коней. Конь – это не более чем безответственный презренный шут шахматной доски. «Это очень ненадежный, трусливый, но деморализующий негодяй, – сказал о нем один американский писатель. – Он может ходить лишь на расстояние двух клеток, однако берет качеством там, где не хватает количества, ибо он может прыгать на одну клетку вбок, подобно коту, может стоять на одной ноге посреди доски и прыгнуть на любую из восьми клеток, на какую ему заблагорассудится, может находиться по одну сторону изгороди и подло убить троих или четверых, стоящих по другую ее сторону; он обладает неприятной особенностью влезать в безопасные места, откуда он может угрожать королю, заставляя его менять позицию, а затем способен проглотить ферзя. По изворотливости конь не знает себе равных, и когда вы прогоните его через одну щель, он влезет в другую». Одна за другой предпринимались безуспешные попытки дать простое, краткое и точное определение хода коня. В действительности он проходит одну клетку как ладья, а другую как слон, причем все это происходит за один скачок, так что несущественно, занята или нет первая клетка, через которую он проходит. Практически это единственный скачкообразный ход в шахматах. Но хотя этот ход и трудно определить формально, даже ребенок постигнет его за несколько минут.

Перейти на страницу:

Все книги серии Математическая мозаика

Как же называется эта книга?
Как же называется эта книга?

Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века.Можно сказать — вероятно, самый увлекательный сборник задач по логике. Около трехсот задач различной сложности сгруппированы по разделам, герои которых Рыцари и Лжецы, Алиса в Стране Чудес, Беллини и Челлини и даже сам граф Дракула! Если человек произносит «Я лгу» — говорит ли он неправду? Почему физики и математики по-разному решают задачи? Как вовремя распознать упыря? Ответы на эти и более серьезные вопросы Вы найдете в этом сборнике, а может быть, и ответ на вопрос «Как же называется эта книга?». Для всех, кто хочет научиться рассуждать.

Рэймонд Меррилл Смаллиан

Научная литература

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное