Читаем Кентерберийские головоломки полностью

Задачи с двумя фигурами

На доске с п2 клетками два ферзя, две ладьи, два слона или два коня всегда можно расположить (безотносительно к тому, атакуют ли они друг друга или нет) (n4-n2)/2 способами. Следующие формулы показывают, сколькими из способов две фигуры можно расположить при условии взаимной атаки и без нее.



(См. головоломку «Охота на льва».)

Динамические шахматные задачи

147. Турне ладьи. Единственную ладью требуется передвигать по всей доске так, чтобы она посетила каждую клетку ровно по одному разу и закончила свое турне в той клетке, с которой его начала. При этом следует сделать как можно меньшее число ходов, но если вы будете не очень внимательны, то совершите ровно на один ход больше, чем нужно.



Разумеется, клетка считается «посещенной» как в случае, если вы просто проходите через нее, так и в случае остановки в ней, Нас не должны волновать софизмы вроде того, что мы дважды посещаем исходный квадрат. Будем считать, что мы посещаем его один раз.


148. Путешествие ладьи. В названии этой головоломки я не случайно употребил слово «путешествие», поскольку слово «турне» означает возвращение в исходное место, а в данном случае мы не будем этого делать. Ладья делает 21 ход, посетив каждую клетку доски ровно по одному разу, останавливается в клетке 10 в конце десятого хода и заканчивает путешествие в клетке 21.



Два последовательных хода нельзя делать в одном и том же направлении; другими словами, вы должны поворачивать после каждого хода.


149. Еще одна томящаяся дева. Злой барон в добрые старые времена заточил одну невинную деву в глубокую темницу, которая находилась подо рвом замка. На рисунке вы видите 63 камеры темницы, которые соединены между собой открытыми дверьми, и камеру, где прикована дева. Некий доблестный рыцарь, который любил эту деву, сумел вызволить ее из рук врага. Добравшись до входа в темницу, как показано на рисунке, он затем дошел и до камеры, где томилась дева, посетив по дороге каждую камеру ровно по одному разу. Возьмите карандаш и попытайтесь обозначить его путь. Преуспев в этом, попробуйте свести этот путь к 22 прямолинейным отрезкам. Это можно сделать, по-прежнему не посетив ни одну камеру дважды.



150. Подземелье. Случилось когда-то во Франции, что один узник за собственные ли грехи или грехи чужие был брошен в подземелье, где насчитывалось 64 камеры, связанные между собой открытыми дверьми, как показано на рисунке. Дабы чем-то скрасить однообразие заточения, он придумывал себе разные головоломки. Вот одна из них.



Как, начиная с указанной на рисунке камеры, он мог бы посетить каждую камеру ровно по одному разу, сделав при этом как можно больше поворотов? Первая попытка узника отмечена на рисунке пунктиром. Можно заметить, что путь узника состоит из 55 прямолинейных участков, но после многих попыток ему удалось улучшить этот результат. Можете ли вы получить большее число отрезков? Заканчивать путь разрешается в любой камере. Попробуйте решить головоломку с карандашом в руках на шахматной доске. При желании вы можете рассматривать прямолинейные участки как ходы ладьи.


151. Лев и человек. Некогда на одной из людных площадей Рима находилась тюрьма. Она представляла собой 64 камеры под открытым небом, которые соединялись между собой, как показано на рисунке. За происходившими в ее стенах состязаниями наблюдали с высокой башни. Толпу особенно увлекало зрелище того, как в лабиринте камер искали друг друга (или избегали) христианин и лев. Их помещали в диаметрально противоположные камеры при всех открытых дверях. Как-то человеку дали в руки меч. Он оказался не из трусливых и старался найти льва так же? как лев, несомненно, искал его.



Человек посетил каждую камеру ровно по одному разу, преодолев наименьшее возможное число прямолинейных участков пути, пока не достиг камеры, где первоначально находился лев. Лев, как это ни странно, тоже посетил каждую камеру ровно по одному разу, пробежав наименьшее возможное число прямолинейных участков пути, пока не добрался до камеры, где первоначально находился человек. Они покинули исходные камеры одновременно, двигались с одинаковой скоростью, и хотя порой мелькали в поле зрения друг друга, но так ни разу и не встретились. Головоломка состоит в том, чтобы показать путь каждого из них.


152. Визиты слона. Белые клетки на шахматной доске изображают те места, которые хочет посетить слон. Поместите слона на любую, какую пожелаете, клетку, и сделайте так, чтобы он мог посетить все желаемые места (делая обычные ходы слона) за наименьшее число ходов. Разумеется, все клетки, через которые он проходит, считаются «посещенными». Вы можете посетить любую клетку более одного раза, но вам не разрешается передвигаться дважды между одними и теми же смежными клетками. Чему равно наименьшее число ходов? Слон не обязан заканчивать свои визиты в том же месте, откуда отправился.


Перейти на страницу:

Все книги серии Математическая мозаика

Как же называется эта книга?
Как же называется эта книга?

Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века.Можно сказать — вероятно, самый увлекательный сборник задач по логике. Около трехсот задач различной сложности сгруппированы по разделам, герои которых Рыцари и Лжецы, Алиса в Стране Чудес, Беллини и Челлини и даже сам граф Дракула! Если человек произносит «Я лгу» — говорит ли он неправду? Почему физики и математики по-разному решают задачи? Как вовремя распознать упыря? Ответы на эти и более серьезные вопросы Вы найдете в этом сборнике, а может быть, и ответ на вопрос «Как же называется эта книга?». Для всех, кто хочет научиться рассуждать.

Рэймонд Меррилл Смаллиан

Научная литература

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное