Читаем Кентерберийские головоломки полностью

– Слышали вы историю о небывало раннем развитии ребенка миссис Перкинс, который умер на прошлой неделе? – спросила миссис Олгуд. – Ему было лишь три месяца от роду, когда он лежал при смерти, а убитая горем мать спросила у доктора, неужели ничего нельзя придумать для спасения ребенка. «Абсолютно ничего!» – сказал доктор. Тогда ребенок посмотрел жалостливо в лицо матери и сказал: абсолютно ничего!

– Невозможно! – настаивала Милдред. – Всего лишь трех месяцев от роду!

– Бывают невероятные случаи преждевременного развития детей, – сказал мистер Филкинс, – достоверность которых часто находит серьезные подтверждения. Но уверены ли вы, миссис Олгуд, что этот случай произошел на самом деле?

– Совершенно, – ответила леди. – Но в самом ли деле вы удивлены тем, что ребенок трех месяцев не может совершенно ничего сказать? Чего бы вы ожидали от него?

– Кстати, о смерти, – сказал торжественно мистер Смусли. – Я знал двух людей, отца и сына, которые погибли в одном и том же сражении с бурами. Они оба носили имя Эндрю Джонсон и были похоронены рядом, но возникла некоторая трудность, как различить их по могильным плитам. Что бы вы сделали?

– Очень просто, – сказал мистер Олгуд. – На одной из плит следовало написать «Мистер Эндрю Джонсон старший», а на другой – «Мистер Эндрю Джонсон младший».

– Но я забыл сказать, что отец погиб первым.

– А какая разница?

– Видите ли, хотелось быть абсолютно точным; отсюда и возникла трудность.

– Но я не вижу никакой трудности, – сказал мистер Олгуд; не видел ее и никто из присутствовавших.

– Хорошо, – объяснил мистер Смусли, – дело вот в чем. Если отец умер первым, то после этого сын уже не был «младшим». Разве не так?

– Если быть совершенно точным, то да.

– Именно этого они и хотели – быть совершенно точными. Теперь: если он уже не был «младшим», то он и не умер «младшим». Следовательно, было бы неправильным делать такую надпись на его могиле. Понимаете, в чем дело?

– Я сейчас вспомнил, – сказал мистер Филкинс, – одну любопытную вещь. Некий человек написал мне как-то, что, роясь у себя в саду, он откопал две старинные монеты. На одной была надпись «51 до н. э.», а на второй – «Георг I». Как я узнал, что он пишет неправду?

– Быть может, вам было известно, что этот человек склонен ко лжи? – спросил Реджинальд.

– Но это не было бы доказательством того, что и в данном случае он лжет.

– Может быть, – предположила Милдред, – вы знали, что в те времена не делали монет?

– Напротив, в оба исторических периода чеканились монеты.

– Были они серебряными или медными? – спросил Билли.

– Мой приятель ничего не писал об этом, и я не вижу, Билли, как бы это могло помочь.

– Понял! – воскликнул Реджинальд. – Надпись «до н. э.» не могла появиться до рождества Христа. Тогда еще не могли предвидеть это событие. Это обозначение было принято лишь позднее, дабы отличить даты, предшествующие тем, которые составляют «нашу эру». Это очень хорошо, но я не могу понять, почему второе утверждение также ложно.

– Реджинальд совершенно прав, – сказал мистер Филкинс, – относительно первой монеты. Вторая же не могла существовать потому, что первый из королей Георгов не носил при жизни имя «Георг I».

– Почему же? – спросила миссис Олгуд. – Он ведь действительно был Георгом I.

– Да, но этого никто не знал, пока не появился Георг II.

– Тогда не было и Георга II, пока на трон не взошел Георг III?

– Нет, не обязательно. Второй Георг стал Георгом II потому, что уже был Георг I.

– Тогда первый Георг был Георгом I потому, что до него не было короля, носившего такое имя.

– Как ты не понимаешь, мама, – сказал Джордж Олгуд. – Ведь мы не называем нашу королеву Викторию Викторией I; но если бы когда-нибудь появилась Виктория II, то ее стали бы так называть.

– Но ведь уже было несколько Георгов, поэтому и он был Георгом I, а несколько Викторий еще не было, значит два случая не одинаковы.

Присутствующие оставили попытки убедить миссис Олгуд, но читатель, конечно, уже ясно понял, о чем идет речь.

– Есть один вопрос, – сказала Милдред, – который я хотела бы, чтобы вы мне разъяснили. Я привыкла покупать у нашего зеленщика пучки спаржи, каждый 12 дюймов в окружности. Я всегда измеряю их рулеткой, чтобы убедиться, что покупаю полное количество. Однажды у зеленщика не оказалось больших пучков и он предложил мне взять вместо одного большого два маленьких пучка по 6 дюймов в окружности. «Это одно и то же, – сказала я, – и, конечно, цена останется прежней». Но зеленщик настаивал на том, что два маленьких пучка содержат больше спаржи, чем один большой, и потребовал сверх обычной цены несколько пенсов. Вот я и хочу узнать, кто из нас был прав? Содержат ли два маленьких пучка столько же спаржи, сколько и один большой, или же в них больше спаржи, чем в большом?

– Это старая головоломка, – сказал, рассмеявшись, Реджинальд, – про мешок зерна, который Семпроний занял у Кая, и ваш зеленщик, вероятно, где-то о ней прочитал. Во всяком случае, он вас здорово надул.

– Так они содержали то же количество спаржи?

Перейти на страницу:

Все книги серии Математическая мозаика

Как же называется эта книга?
Как же называется эта книга?

Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века.Можно сказать — вероятно, самый увлекательный сборник задач по логике. Около трехсот задач различной сложности сгруппированы по разделам, герои которых Рыцари и Лжецы, Алиса в Стране Чудес, Беллини и Челлини и даже сам граф Дракула! Если человек произносит «Я лгу» — говорит ли он неправду? Почему физики и математики по-разному решают задачи? Как вовремя распознать упыря? Ответы на эти и более серьезные вопросы Вы найдете в этом сборнике, а может быть, и ответ на вопрос «Как же называется эта книга?». Для всех, кто хочет научиться рассуждать.

Рэймонд Меррилл Смаллиан

Научная литература

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное