Другая игрушка представляет собой сферический маятник, который, в отличие от обычного, раскачивается в любом направлении, не ограничиваясь лишь двумя. В основание устройства помещены несколько небольших магнитов, притягивающих металлический отвес. В момент остановки маятника отвес прилипает к одному из магнитов. Идея заключается в том, чтобы запустить маятник и угадать, какой из магнитов притянет к себе отвес. Предсказать это с высокой вероятностью невозможно, даже если магнитов всего три и расположены они в вершинах треугольника. Некоторое время маятник будет качаться между вершинами
Ученые, занимающиеся динамикой, традиционно полагают, что описать поведение системы с помощью уравнений – значит понять ее. Что лучше уравнений может передать существенные черты системы? Уравнения, описывающие движение качелей или тех же игрушек, устанавливают связь между углом отклонения маятника, скоростью, преодолеваемым трением и движущей силой. Но из-за того, что в уравнениях присутствует крошечная доля нелинейности, исследователь также обнаружит, что он не в состоянии ответить на простейшие практические вопросы о будущих состояниях системы. С помощью компьютера эти состояния можно смоделировать, быстро просчитав каждый цикл. Однако моделирование имеет свои минусы: едва заметная неточность с каждым шагом расчета быстро нарастает, поскольку системе свойственна «сильная зависимость от начальных условий». Полезный сигнал быстро теряется в шумах.
Но теряется ли на самом деле? Открыв непредсказуемость, Лоренц одновременно обнаружил и некую регулярность. Другим исследователям также удавалось нащупать что-то похожее на структуру в беспорядочном, на первый взгляд, поведении изучаемых систем. Тем, кто не отмахнулся от исследования маятника как объекта, чересчур простого для изысканий, удалось разглядеть весьма интригующие детали. Ученые осознали, что, хотя основное в механизме колебаний маятника уже постигнуто физикой, это знание невозможно применить для прогнозирования долговременного поведения системы. Мелкие детали были уже ясны, а поведение маятника в крупных временных масштабах все еще представлялось загадкой. Рушился традиционный, локальный подход к исследованию систем, подразумевавший рассмотрение каждого элемента в отдельности, а затем соединение их в целое. В отношении маятников, жидкостей, электронных схем и лазеров метод познания, основанный на составлении уравнений, больше не оправдывал себя.
В 1960-х годах дорогой Лоренца шли и некоторые другие исследователи, в числе которых были французский астроном, изучавший орбиты галактик[79]
, и японский инженер-электронщик, работавший с электронными микросхемами[80]. Тем не менее первая обдуманная и согласованная попытка понять суть отличия глобального поведения от локального исходила от математиков. Среди них был Стивен Смейл из Калифорнийского университета в Беркли, уже известный своими решениями наиболее запутанных проблем многомерной топологии. Когда один из молодых физиков[81] как бы между прочим поинтересовался у Смейла направлением его деятельности, в ответ он услышал всего лишь одно слово, которое буквально ошеломило юношу, показавшись ему чистой воды абсурдом. Смейл изучал осцилляторы![82] Все колеблющиеся системы – маятники, струны, электросхемы – представляют собой ту область знаний, с которой физики «разделываются» еще в самом начале учебы по причине ее простоты. С чего бы прославленному математику тратить время на элементарную физику? Лишь несколько лет спустя молодой человек осознал, что Смейла интересовали нелинейные хаотические осцилляторы. Этот математик видел вещи, недоступные физикам.Вначале Смейл выдвинул ошибочную догадку. На строгом математическом языке он предположил, что практически все динамические системы в большинстве случаев начинают вести себя вполне понятно и предсказуемо. Но, как он вскоре понял, дела обстояли не так просто.