Читаем Хаос. Создание новой науки полностью

Хаос и неустойчивость – понятия, смысл которых еще не отлился в чеканные формулировки, – вовсе не синонимы. Хаотичная система вполне может демонстрировать устойчивость, если ее специфическое иррегулярное поведение продолжает существовать вопреки незначительным помехам. Система Лоренца наглядно показывала это, хотя пройдут годы, прежде чем Смейл услышит о Лоренце. Открытый Лоренцем хаос при всей своей непредсказуемости был столь же устойчивым, как шарик в лунке[90]. Можно добавить в эту систему шум, покачать, хорошенько разболтать ее, помешать движению внутри нее – и все равно, когда возмущение уляжется и мимолетные факторы исчезнут, словно замирающее эхо в глубоком каньоне, система вновь вернется к своему прежнему беспорядочному состоянию. Локально она непредсказуема, глобально – устойчива. Реальные же динамические системы вели себя, повинуясь куда более сложному набору правил, чем можно вообразить. Пример, который приводился в адресованном Смейлу послании, являл собой другую простую систему, открытую более тридцати лет назад, но незаслуженно забытую. Эта система – колебательный электрический контур, по сути своей маятник, нелинейный и подвергаемый, подобно качелям с качающимся на них ребенком, периодическому воздействию силы.

Если еще точнее, речь шла об электронной лампе, работу которой изучал в 1920-е годы голландский инженер-электронщик Балтазар Ван дер Поль[91]. Современный студент-физик легко разберется в поведении такого осциллятора, взглянув на экран осциллографа, но Ван дер Поль, за неимением последнего, был вынужден изучать его, прислушиваясь к изменениям тональности звука в телефонных наушниках. Раз за разом изменяя силу подаваемого электрического тока, он, к своему удовольствию, обнаружил в поведении системы некий порядок: будто взбегая по лестнице, тон последовательно «перепрыгивал» от частоты к частоте. Но однажды голландец заметил кое-что очень странное: звуки в наушниках стали иррегулярными. Изобретатель затруднялся объяснить, что происходит в лампе. Впрочем, это его не слишком беспокоило. «Порой перед переходом к более низкой частоте в телефонном приемнике слышится иррегулярный шум, – отмечал он в письме в журнал

Nature. – Однако это второстепенное явление»[92]. Ван дер Поль был одним из многих ученых, которые увидели хаос краем глаза, однако не имели подходящего языка, чтобы понять это. Для создателей электронных ламп важным был захват частоты. Для людей же, пытавшихся проникнуть в природу сложного, гораздо интереснее был «иррегулярный шум», исходивший от взаимодействия токов высокой и низкой частот.

Хотя гипотеза Смейла не подтвердилась, она дала новое направление его исследованиям сложных динамических систем. Некоторые математики по-новому оценили возможности осциллятора Ван дер Поля, и теперь Смейл приложил их выводы к неизвестной области. Единственным его осциллографом был его собственный мозг, но этот мозг довели до совершенства годы изучения топологической вселенной. Смейл досконально разобрался в пространстве всех возможных состояний осциллятора – пользуясь физическими терминами, в фазовом пространстве. Любое состояние системы, зафиксированное в определенный момент времени, описывается одной точкой фазового пространства. Все данные о положении или скорости системы содержатся в координатах указанной точки. Если состояние системы изменится, точка передвинется в новое место. Поскольку состояние меняется непрерывно, точка вычерчивает траекторию.

Фазовое пространство простой системы вроде маятника – это просто прямоугольник на плоскости. Угол отклонения маятника в заданный момент времени определяет положение точки на оси «восток – запад», а его скорость – на оси «север – юг». Для маятника, периодически качающегося взад и вперед, траектория в фазовом пространстве будет петлей, закручивающейся вновь и вновь, по мере того как система раз за разом проходит через те же состояния.



Построение изображений в фазовом пространстве. Традиционные временные ряды (вверху)и траектории в фазовом пространстве (внизу

)используются как два вида наглядного отображения одних и тех же данных и визуализации поведения системы в течение длительного периода времени. Первая (слева)система сходится к одной точке фазового пространства, что подразумевает устойчивое равновесие. Вторая периодически повторяет саму себя, образуя циклическую орбиту. Третья обнаруживает периодическое повторение в более сложном, «вальсовом» ритме, демонстрируя цикл с тремя волнами. Четвертая хаотична.


Перейти на страницу:

Все книги серии Книги политеха

Легко ли плыть в сиропе. Откуда берутся странные научные открытия
Легко ли плыть в сиропе. Откуда берутся странные научные открытия

Как связаны между собой взрывчатка и алмазы, кока-кола и уровень рождаемости, поцелуи и аллергия? Каково это – жить в шкуре козла или летать между капель, как комары? Есть ли права у растений? Куда больнее всего жалит пчела? От несерьезного вопроса до настоящего открытия один шаг… И наука – это вовсе не унылый конвейер по производству знаний, она полна ошибок, заблуждений, курьезных случаев, нестандартных подходов к проблеме. Ученые, не побоявшиеся взглянуть на мир без предубеждения, порой становятся лауреатами Игнобелевской премии «за достижения, которые заставляют сначала рассмеяться, а потом – задуматься». В своей книге авторы Генрих Эрлих и Сергей Комаров рассказывают об этих невероятных открытиях, экспериментах исследователей (в том числе и над собой), параллелях (например, между устройством ада и черными дырами), далеко идущих выводах (восстановление структуры белка и поворот времени вспять), а самое главное – о неиссякаемой человеческой любознательности, умении задавать вопросы и, конечно же, чувстве юмора.

Генрих Владимирович Эрлих , Сергей М. Комаров

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Научно-популярная литература / Образование и наука
Хаос. Создание новой науки
Хаос. Создание новой науки

«Хаос. Создание новой науки» – мировой бестселлер американского журналиста Джеймса Глика, переведенный более чем на два десятка языков, в котором он рассказывает историю возникновения науки о хаосе. Начав со случайного открытия метеоролога Эдварда Лоренца, пытавшегося создать модель долгосрочного прогноза погоды, Глик последовательно реконструирует всю цепочку внезапных озарений и необычных экспериментов, которые привели ученых к осознанию, что существуют еще неизвестные им универсальные законы природы. Глик не только рассказывает историю рождения новой науки, но и размышляет над тем, каким образом происходит научный прогресс и какова в нем роль безумных гениев, занимающихся поисками нестандартных решений вопреки имеющемуся знанию.В формате PDF A4 сохранен издательский макет.

Джеймс Глик

Научная литература
Луна. История будущего
Луна. История будущего

Британский журналист и писатель Оливер Мортон освещает в своих работах влияние научно-технического прогресса на нашу жизнь. Луна испокон веков занимала второстепенное место в мифологическом сознании, в культурном контексте, а потом и в астрономических исследованиях. Краткий апогей ее славы, когда по лунной поверхности прошлись люди, окончился более полувека назад. И тем не менее Луна всегда рядом, скромная, но незаменимая, неразрывно связанная с прошлым, настоящим и будущим человечества. Мортон создает ее объемный портрет, прорисовывает все грани нашего с ней взаимодействия и наглядно показывает: что бы ни происходило с нами дальше, Луна продолжит играть свою тихую, но ключевую роль.В формате PDF A4 сохранен издательский макет книги.

Оливер Мортон

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Учебная и научная литература / Образование и наука
Вселенная. Краткий путеводитель по пространству и времени: от Солнечной системы до самых далеких галактик и от Большого взрыва до будущего Вселенной
Вселенная. Краткий путеводитель по пространству и времени: от Солнечной системы до самых далеких галактик и от Большого взрыва до будущего Вселенной

Современная астрофизика – это быстро развивающаяся наука, которая использует новейшие (и очень дорогие) приборы и суперкомпьютеры. Это приводит к огромному потоку результатов: экзопланеты и темная энергия, гравитационные волны и первые снимки Плутона с близкого расстояния. В результате астрономическая картина мира постоянно меняется. Однако многие фундаментальные особенности этой картины уже сформировались. Мы знаем, что живем в расширяющейся Вселенной, чей возраст составляет немногим менее 14 млрд лет. Нам известно, как формировались и формируются ядра элементов. Мы можем наблюдать разные стадии формирования звезд и планетных систем. Удается даже разглядеть, как в дисках вокруг звезд формируются планеты. Тем не менее остается много вопросов и загадок. Что такое темное вещество и темная энергия? Как взрываются сверхновые разных типов? Как устроены черные дыры? Наконец, есть ли еще жизнь во Вселенной, и какой она может быть?

Сергей Борисович Попов

Справочники

Похожие книги