Читаем Хаос. Создание новой науки полностью

Дробное измерение позволяет вычислять характеристики, которые не могут быть четко определены иным путем: степени неровности, прерывистости или неустойчивости какого-либо объекта. Например, извилистая береговая линия, несмотря на неизмеримость ее «длины», обладает присущей только ей шероховатостью. Мандельбро указал пути расчета дробных измерений объектов окружающей действительности при использовании определенной методики построения форм или некоторых заданных величин. Создавая свою геометрию, он выдвинул закон о неупорядоченных формах, что встречаются в природе. Закон гласил: степень нестабильности постоянна при различных масштабах. Справедливость этого постулата подтверждается вновь и вновь. Мир снова и снова обнаруживает устойчивую неупорядоченность.

Однажды зимним днем 1975 г. Мандельбро работал над своей первой монографией. Размышляя о явлении параллельных токов, он понял, что должен найти некий термин, который стал бы стержнем новой геометрии. Одолжив у сына латинский словарь, он стал перелистывать его и наткнулся на слово fractus, образованное от глагола fragere — «разбивать». Слово было созвучно английским fracture (разрыв) и fraction (дробь). Так Мандельбро придумал термин fractal (фрактал), которое вошло как существительное и прилагательное в современный английский и французский языки.


Фрактал позволяет вообразить бесконечность.

Представьте себе равносторонний треугольник с длиной стороны в один фут. А теперь мысленно проделайте следующую несложную трансформацию: выделите на каждой стороне треугольника среднюю треть и приставьте к ней равносторонний треугольник, длина стороны которого составляет одну треть от длины стороны исходной фигуры. Вы получите звезду Давида. Она образована уже не тремя отрезками длиной в один фут, а двенадцатью отрезками длиной в четыре дюйма, и вершин у нее не три, а шесть.

Повторите операцию, прикрепив еще более маленький треугольник к средней трети каждой из двенадцати сторон. Если проделывать эту процедуру вновь и вновь, число деталей в образуемом контуре будет расти и расти, подобно тому как дробится последовательность Кантора. Изображение приобретает вид снежинки с геометрически идеальными очертаниями. Оно известно как кривая Коха. Связная линия, составленная из прямых или криволинейных участков, названа по имени шведского математика Хельга фон Коха, впервые описавшего подобный феномен в 1904 г.


Рис. 4.4. «Снежинка» Коха. «Приблизительная, но весьма удачная модель береговой линии» — так охарактеризовал ее Мандельбро. Чтобы создать подобную конструкцию, начнем с построения треугольника, каждая сторона которого равна единице. В середину каждой стороны встроим новый треугольник, уменьшенный в три раза, и повторим преобразования многократно. Длина контура полученной фигуры равна 3 × 4/3 × 4/3 × 4/3… и так далее до бесконечности. Однако ее площадь все же меньше площади окружности, описанной около первоначального треугольника. Таким образом, бесконечно длинная линия очерчивает ограниченную площадь.


Поразмыслив, можно заключить, что кривой Коха присущи некоторые весьма занимательные черты. Прежде всего, она представляет собой непрерывную петлю, никогда не пересекающую саму себя, так как новые треугольники на каждой стороне всегда достаточно малы и поэтому не сталкиваются друг с другом. Каждое преобразование добавляет немного пространства внутри кривой, однако ее общая площадь остается ограниченной и фактически лишь незначительно превышает площадь первоначального треугольника. Если описать окружность около последнего, кривая никогда не растянется за ее пределы.

Но все же сама кривая бесконечно длинна, так же как и Евклидова прямая, стремящаяся к краям ничем не ограниченной Вселенной. Подобно тому как во время первой трансформации один отрезок длиной в один фут заменяется на четыре длиной в четыре дюйма, так же и каждое последующее преобразование умножает общую длину кривой на четыре третьих. Подобный парадоксальный итог — бесконечная длина в ограниченном пространстве — в начале XX века поставил в тупик многих математиков. Кривая Коха оказалась монстром, безжалостно поправшим все мыслимые интуитивные ощущения относительно форм и (это воспринималось как данность) не похожим на что-либо, существующее в природе.

Перейти на страницу:

Похожие книги