Удивительные исследования вызвали слабый отклик в научном мире. Однако несколько упрямых математиков создали иные формы, которым были присущи странные черты кривой Коха, — появились кривые Пеано, а также «ковры» и «набивки» Серпински. Для построения «ковра» нужно взять квадрат и разделить его на девять равных квадратов меньшей площади, а затем удалить центральный. Далее следует повторить операцию с восьмью оставшимися квадратами, сделав в центре каждого из них отверстие. «Набивка» представляет собой примерно то же самое, но ее составляют не квадраты, а равносторонние треугольники. Она обладает качеством, которое весьма трудно представить: любая произвольная точка является точкой разветвления, своего рода «вилкой» в структуре. Вообразить подобное сложно, пока не посмотришь на Эйфелеву башню: ее антенны, металлические связки и мачты, разветвляясь на изящные решетчатые конструкции, являют собой мерцающую сетку тончайших деталей. Эйфель, конечно же, не мог достичь бесконечности в своем творении, однако эта хитрая инженерная уловка, скрадывая тяжеловесность сооружения, не лишает его внушительности и мощи.
Очень трудно постичь всю сложность бесконечности, внедряющейся в самое себя. Однако человеку с развитым пространственным воображением такое повторение структуры во все более мелких масштабах может открыть целый мир. Мандельбро исследовал подобные конфигурации, пытаясь силой разума расширить таящиеся в них возможности. Это занятие увлекало его, как игра; словно ребенок, он с восторгом любовался на поразительные изменения, которые никто не увидел и не постиг до него. Он придумывал этим диковинным конфигурациям названия: канаты, простыня, губка, пена, сгусток, набивка.
Фрактальное измерение оказалось замечательным инструментом. В известном смысле степень неровности определяла способность того или иного объекта занять определенное пространство. Обычная Евклидова одномерная прямая в этом не нуждается, чего нельзя сказать о контуре кривой Коха, бесконечная длина которого теснится в ограниченном пространстве. Сама кривая являет собой уже нечто большее, чем просто линию, но все же это еще и не плоскость; она глубже одномерного объекта, но поверхностнее двухмерной формы. Используя технику, созданную математиками в начале XX века, но потом почти забытую, Мандельбро смог вполне точно описать фрактальное измерение. Для кривой Коха, например, бесконечное умножение на 4
/3 дает размерность 1,2618.Рис. 4.5. Конструкция с отверстиями. Лишь некоторые математики в начале XX века проникли в сущность объектов, созданных с помощью техники добавления или удаления бесконечного множества составляющих их частей. Внешний вид подобных конструкций казался зачастую просто чудовищным. Одной из таких фигур является ковер Серпински. Для его построения удаляют одну девятую часть из центра квадрата, затем вырезают девятые части из центров оставшихся, менее крупных восьми квадратов и т. д. Аналогом ковра в трехмерном пространстве считается губка Менгера, весьма внушительная решетка, имеющая бесконечную площадь поверхности и нулевой объем.
Продолжая следовать этим путем, Мандельбро, по сравнению с другими математиками, пользовался двумя преимуществами. Во-первых, он имел доступ к вычислительной технике корпорации IBM, что помогло ему решить задачу, идеально подходящую для высокоскоростного компьютера. Подобно тому как метеорологам приходится проделывать одни и те же подсчеты для миллионов соседствующих друг с другом точек атмосферы, Мандельбро должен был вновь и вновь выполнять несложное преобразование. Компьютер мог справиться с этим без особого труда, демонстрируя порой весьма неожиданные результаты. Математики в начале XX века быстро споткнулись на сложных вычислениях, так же и для первых биологов стало серьезным препятствием отсутствие микроскопа. Воображение способно рисовать тончайшие детали, но лишь до определенной черты.