Когда Каданофф занимался этим вопросом в 60-х годах, фазовые переходы ставили ученых в тупик. Представьте себе процесс намагничивания металлического бруска: по мере того как брусок переходит в магнитное состояние, он должен как бы определиться со своей ориентацией, которую выбирает произвольным образом. Этот выбор должна повторить каждая крошечная частица металла. Но как?
В процессе выбора атомы металла должны обмениваться друг с другом определенной информацией. С точки зрения Каданоффа, указанное сообщение наиболее наглядно может быть описано на языке масштабов. В сущности, он предположил, что металл разделен на небольшие ячейки, каждая из которых сообщается со своими ближайшими соседками, причем подобное сообщение можно описать так же, как и взаимодействие любого атома с близлежащими. Отсюда вытекает необходимость масштаба. Наиболее удобно рассматривать металл как фракталоподобную модель, состоящую из ячеек различных размеров.
Теперь для полного воцарения идеи масштабирования требовались математический аппарат и детальное исследование реальных систем. Каданофф чувствовал, что взялся за нелегкое дело, но зато открыл мир изумительной красоты, рожденной универсальностью неписаных природных законов. Универсальность была налицо. Ведь такие, казалось бы, не связанные друг с другом феномены, как кипение жидкостей и намагничивание металлов, подчинялись одним и тем же правилам.
Кеннет Вильсон проделал немалую работу, связавшую все экспериментальные факты воедино в рамках теории «групп перенормировки». Он обеспечил физиков эффективным методом реальных вычислений характеристик реальных систем. Метод перенормировки, появившийся в физике в 40-х годах как раздел квантовой теории, сделал возможным расчеты взаимодействия электронов и протонов. Главной трудностью таких вычислений (как, впрочем, и тех, которые занимали Каданоффа и Вильсона) являлась бесконечность некоторых величин. Борьба с ней была занятием суетным и малоприятным, и Ричард Фейнман, Джулиан Швингер, Фримен Дайсон и другие физики ввели понятие о перенормировке, чтобы освободиться от бесконечностей.
Лишь намного позже, в 60-х годах, Вильсон докопался до причин успеха идеи перенормировки. Как и Каданофф, он размышлял над принципами масштабирования. Определенные характеристики (такие, например, как масса частицы) всегда считались постоянными, как и масса любого предмета, встречающегося нам в повседневной жизни. Принцип масштабирования быстро распространился благодаря тому, что трактовал величины вроде массы отнюдь не как постоянные. Масса и подобные ей характеристики в процессе перенормировки варьируются как в сторону уменьшения, так и в сторону увеличения в зависимости от масштаба, в котором их рассматривают. Эта идея, казавшаяся полной нелепостью, была точным аналогом рассуждений Мандельбро о геометрических формах и береговой линии Великобритании (о том, что их длину невозможно измерить вне зависимости от масштаба). Здесь присутствовала определенная доля относительности. Местоположение наблюдателя — близко ли он, далеко ли, на берегу моря или на космическом спутнике — влияло на результат. Мандельбро также заметил, что наблюдаемые при переходе от одного масштаба к другому перемены подчиняются определенным закономерностям, далеким от произвольности. Изменчивость общепринятых измерений массы или длины говорила о том, что фиксированной остается некая величина иного типа. В случае с фракталами такой величиной было фрактальное измерение — инвариант, который можно рассчитать и использовать в качестве инструмента для дальнейших вычислений. Допущение, что масса может варьироваться в зависимости от масштаба, означало, что математики могут различить феномен подобия невзирая на масштаб явления.
Таким образом, когда возникает необходимость в трудоемких вычислениях, группы перенормировки Вильсона предлагают иной маршрут следования в дебрях сложных проблем. До этого единственным способом изучения в высшей степени нелинейных процессов являлась так называемая теория пертурбаций. Теория эта предполагает, что нелинейная проблема близка к определенной линейной задаче, которая может быть решена, и отстоит от нее лишь на расстояние небольшого «возмущения». Разрешив линейную задачу, мы должны прибегнуть к сложному набору операций с так называемыми диаграммами Фейнмана. Чем точнее нам нужно решить нелинейную задачу, тем больше таких громоздких диаграмм необходимо построить. Если повезет, расчеты приведут нас к решению, но удача — увы! — имеет привычку ускользать всякий раз, когда вопрос особенно интересен. Файгенбаум, как и любой молодой ученый, занимавшийся в 60-х годах физикой частиц, долгими часами строил вышеупомянутые диаграммы. В конечном счете он бросил это занятие, убедившись, что теория пертурбаций скучна, однобока и мало что объясняет. Зато он проникся симпатией к группам перенормировки Вильсона. Они, допуская внутреннее подобие, позволяли устранить некоторые сложности.