И вдруг Файгенбаум увидел, что гадать уже незачем. В системе пряталась неожиданная упорядоченность, числа приближались друг к другу, словно столбы высоковольтной линии, сходящиеся на горизонте в точку, — удвоения периодов не просто ускорялись, а ускорялись с постоянным коэффициентом.
Почему так происходило? Обычно появление геометрической сходимости предполагает, что в определенном месте некий объект повторяет сам себя в различных масштабах. Если внутри изучаемой системы таилась подобная масштабная модель, это было очень любопытно. Никто еще такого не наблюдал. Файгенбаум, рассчитав коэффициент конвергенции с наибольшей точностью, какая могла быть достигнута с имевшимся у него калькулятором (три цифры после запятой), получил следующий результат: 4,669. Имел ли данный коэффициент какой-либо математический смысл? Файгенбаум сделал то, что на его месте сделал бы любой ученый, хоть немного интересующийся числами: он провел остаток дня, пытаясь подогнать получившийся итог под известные постоянные: π,
Удивительно, но позже Роберт Мэй понял, что он тоже наблюдал подобную геометрическую сходимость, однако забыл о ней столь же быстро, сколь мимолетно она промелькнула перед его глазами. С точки зрения эколога, это был не более чем специфический вычислительный эффект. В системах реального мира — популяциях животных и даже в некоторых экономических моделях — любые четкие закономерности неизбежно исчезали в шумах. Та самая неупорядоченность, которая до сих пор служила ученому путеводной нитью, заставила его остановиться на пороге открытия. Никогда бы ему не пришло в голову, что числовые тонкости столь важны.
Но Файгенбаум прекрасно понимал, к чему привели его вычисления, поскольку геометрическая сходимость указывала на присутствие в уравнении чего-то
Лето быстро сменяется осенью, которая сильно чувствуется в разреженном воздухе Лос-Аламоса. Уже подходил к концу октябрь, когда Файгенбауму пришла в голову странная мысль. Он знал, что Метрополис, Пол Стейн и Майрон Стейн, рассматривая описанное выше уравнение и другие, выяснили, что определенное поведение повторяется при переходе от одного типа функции к другому. Обнаруживались те же сочетания знаков «П» и «Л», причем в том же порядке. Одна из исследованных ранее функций включала синус, из-за чего тщательно разработанный Файгенбаумом подход к изучению параболы оказался неподходящим. Ему пришлось начать заново; вновь используя свой НР-65, он начал рассчитывать удвоения периодов для функции
То же число! Невероятно, но данная тригонометрическая функция не просто обнаруживала последовательную геометрическую регулярность. Наблюдаемый эффект оказался численно
Файгенбаум связался с Полом Стейном, но тот не поверил в подобное совпадение, посчитав доказательства недостаточными, — в конце концов, точность калькулятора оставляла желать лучшего. Несмотря на это Файгенбаум позвонил своим родителям в Нью-Джерси и сообщил, что столкнулся в своих исследованиях с весьма глубоким вопросом. Этот вопрос, объявил он матери, скоро сделает его, Файгенбаума, знаменитым. Затем он приступил к изучению других функций — всех, которые, по его мнению, также проходили через последовательность разветвлений на пути к хаосу. Вычисления давали неизменно тот же итог — 4,669.