Итак, обычно, говоря о воде, мы имеем в виду Н2О, где символ «H» относится к обоим стабильным изотопам: 98,98 % по содержанию составляет обычный водород, а 0,02 % приходится на дейтерий – это природное содержание изотопов для водорода. Атому кислорода все равно, связываться ли с H или с D, и молекула воды может содержать ни одного, один или (очень редко) два атома дейтерия. Это означает, что питьевая вода содержит H2O, HDO и D2O в приблизительной пропорции 25 000 000:5000:1. Таким образом, на первый взгляд кажется, что шансы встретить молекулу D2O невелики, но поскольку в столовой ложке воды содержится 500 000 000 000 000 000 000 000 молекул воды (5 × 1023), то вы можете сделать ставку у своего букмекера на то, что каждый день поглощаете достаточное количество молекул тяжелой воды.
Значит, мы пьем эту воду и готовим на ней пищу; но можно ли получить ее в чистом виде? Ответ утвердительный, и именно поэтому вам не стоит заменять ежедневную порцию H2O на D2O. Химические связи, которые дейтерий образует в организме с углеродом, азотом и кислородом, будут почти такими же, как те, которые образует водород, но скорость, с которой ферменты (белки-катализаторы в нашем теле) обращаются с водородом или дейтерием, будет отличаться, так как дейтерий в два раза тяжелее водорода. Это означает, что употребление тяжелой воды будет медленно искажать ваш метаболизм и в итоге у вас возникнут серьезные проблемы со здоровьем. Эта небольшая разница в продолжительности процесса – или, вернее, в скорости реакции, как называют ее химики, – лежит в основе производства тяжелой воды.
Поскольку нейтрон открыли лишь в 1932 году, а дейтерий – почти сразу после этого, нет ничего удивительного в том, что первые сообщения об интересе нацистов к тяжелой воде разведка встретила несколько скептически: на службе практически не было офицеров с естественно-научным образованием[140]. К счастью, физик Реджинальд Джонс стал первым ученым, завербованным в разведку в 1939 году, и смог немедленно приступить к действиям, когда получил от норвежского ученого телеграмму, в которой тот сообщал о планах нацистов увеличить производство тяжелой воды в оккупированной Норвегии[141].
Несмотря на то что высокая концентрация и долгий прием тяжелой воды вредны для здоровья, в планы немцев не входило медленное отравление британцев D2O, произведенной на заводе Norsk Hydro’s Vemork в Рьюкане. Желание заполучить единственный в Европе крупный завод по производству тяжелой воды не было основной причиной оккупации немцами Норвегии в 1940 году, но это непременно принесло бы пользу Uranverein – нацистскому проекту по созданию ядерной бомбы.
К несчастью для нацистов, союзникам было известно о существовании завода в Рьюкане (в горах на юге Норвегии, в губернии Телемарк). Он был частью большой системы химических заводов, где основными реагентами служили электроны – очень дешевые электроны, которые использовались в самых разных процессах. Одним из направлений было производство газообразного водорода путем электролиза воды, в результате которого получался побочный продукт – вода, обогащенная D2O. Тяжелую воду здесь производили с середины 30-х годов, а последнюю предвоенную поставку тайно получило Второе разведывательное управление – орган военной разведки вооруженных сил Франции; 185 кг этой воды второпях привезли ради безопасности в Англию двое французских ученых, спасавшихся от немецкого вторжения в начале лета 1940 года[142].
Отдаленное расположение завода было благом лишь отчасти: его было легко защищать и патрулировать, но во многих отношениях он был более уязвим для дерзких диверсионных операций, чем если бы располагался, скажем, в Людвигсхафене на Рейне. Людвигсхафен служил домом большому химическому конгломерату, однако ему не хватало важного ресурса: дешевых электронов, которые можно получить на гидроэлектростанции.
Если у вас есть доступ к электричеству, вы можете провести электролиз, пропуская электрический ток через раствор при помощи двух электродов, как описывалось в главе 10. Если раствор водный, а напряжение достаточно высокое (это классический демонстрационный опыт из школьной программы), то вы получите газообразный водород там, где электроны попадают в воду и где собираются катионы (катод), и кислород там, где они снова возвращаются в замкнутую электрическую цепь (анод). Если вы работаете с расплавом оксида алюминия, то на катоде вы получите металлический алюминий, а из концентрированного раствора хлорида натрия (столовой соли) на аноде вы можете получить газообразный хлор. Все эти процессы служат рабочими лошадками для химической промышленности по всему миру.
Александр Николаевич Петров , Маркус Чаун , Мелисса Вест , Тея Лав , Юлия Ганская
Любовное фэнтези, любовно-фантастические романы / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Научная литература / Самиздат, сетевая литература / Любовно-фантастические романы