Читаем КЛЕЙМО СОЗДАТЕЛЯ. Гипотеза происхождения жизни на Земле. полностью

Молекула тРНК отличается и другими структурными особенностями, но и приведенного цитирования из весьма основательного труда Зенгера достаточно, чтобы Читатель понял, что представленная в следующих главах формализация (всегда ведущая к фактическому упрощению) схемы генетического кодирования, в которой молекула тРНК занимает одну из ключевых позиций, сама по себе требует изряднойумственной отваги. Не меньшая отвага нужна, чтобы удержаться от дальнейших упрощений, отличающих, например, креационизм.

Найдено несколько десятков (теоретически 61) индивидуальных тРНК, так как каждая из них способна переносить в процессе белкового синтеза единственную аминокислоту. Конкретные тРНК называют по имени той протеиногенной аминокислоты, которую они акцептируют (например, лизиноваятРНК). Если одна и та же аминокислота акцептируется несколькими индивидуальными тРНК, то последние называют изоакцепторными и нумеруют (например, одна из тРНК для валина — тРНКвал1).

Несмотря на то, что молекулы тРНК строго специфичны, и каждой из них соответствует собственный антикодон и присоединяемая аминокислота, они не являются полноценными посредниками между этими аминокислотами и этими (анти-)кодонами. Последние — это часть структуры тРНК, что до первых, то тРНК не узнают их в принципе, да и садятся они на один и тот же триплет тРНК — концевую последовательность -ССА-3`, не различающую аминокислоты. Требуется еще один посредник, который бы узнавал обе эти молекулы так же безошибочно, как кодон узнает антикодон — и связывал их. Правила узнавания кодона и антикодона, приводящие к выбору той или иной аминокислоты для роста цепочки полипептида, называются генетическим кодом. Эти правила имеют линейный, матричный характер. Ясно, что их недостаточно, чтобы аминокислота нашла свой антикодон (в своейтРНК), поскольку 3`-последовательность, на которую она садится, у всех тРНК одна и та же. Рибосомы же, где происходит полимеризация аминокислот, различают именно тРНК. Таким образом, должна существовать еще, как минимум, одна молекула, способная различать аминокислоты и соответствующие им тРНК. Этот минимум Природа реализовала в виде молекулы аминоацил-тРНК-синтетазы, АРСазы. АРСазы способны различать и фиксировать на своей поверхности каждую из всех двадцати аминокислот. Одновременно они различают и соответствующие изоакцепторныетРНК. Рибосома имеет общий сайт связывания для всех тРНК и не различает их. Других молекулярных посредников между записанной в нуклеиновой кислоте и реализуемой в виде полипептида информации нет, и генетическое кодирование объединяет только три молекулы: тРНК с ее антикодоном, соответствующая ему аминокислота и фермент АРСаза. АРСаза способна присоединять еще и три остатка фосфорной кислоты, служащие источником энергии для реакции аминоацилированиятРНК, которую и катализирует АРСаза. Поскольку мы рассматриваем здесь не весь механизм синтеза белков, а только его кодировку, то есть, машину кодирования, а не машину синтеза, о других молекулярных деталях этой машины — различных полимеразах и других ферментах, информационных и рибосомальных РНК, самих рибосомах и т.п. — мы говорить не будем.

Таким образом, генетический код, как соответствие триплета оснований той или иной аминокислоте, реализуется не как взаимное узнавание (рекогниция, для которой не существует физико-химических оснований), а как узнавание одного и того же посредника — белка АРСазы, структура которого имеет соответствующие сайты. Это узнавание должно иметь вполне убедительную стереохимическую основу. И тем не менее, малая величина аминокислот и однотипная стереохимия тРНК представляют серьезные трудности для рекогниции. Справедливости ради стоит, однако, сказать, что тРНК все же несколько отличаются друг от друга — и не только антикодоном: имеют место небольшие нуклеотидные отличия, так что тРНК с разными антикодонами несколько различны и по своей пространственной конфигурации.

Детальному анализу структуры и функции АРСаз посвящены очень основательные обзоры Карла Вёзе[51]; на русском языке о них довольно подробно можно прочесть в популярных статьях[52] [53] замечательного Соровского Образовательного Журнала. Насинтересуют здесь лишь основные характеристики этих ферментов. Википедия — вполне корректно — трактует АРСазу следующим образом:

Перейти на страницу:

Похожие книги

Развитие эволюционных идей в биологии
Развитие эволюционных идей в биологии

Книга известного биолога-эволюциониста, зоолога и эколога Н. Н. Воронцова представляет собой переработанный и расширенный курс теории эволюции, который автор читает на кафедре биофизики физфака МГУ.В книге подробно прослежено развитие эволюционной идеи, возникшей за тысячи лет до Дарвина и принадлежащей к числу немногих общенаучных фундаментальных идей, определивших мышление юнца XIX и XX столетия. Проанализированы все этапы зарождения и формирования представлений об эволюции, начиная с первобытного общества. Особое внимание уделено истокам, развитию и восприятию дарвинизма, в частности, в России, влиянию дарвинизма на все естествознание.Последние главы показывают, как сегодняшние открытия в области молекулярной биологии, генетики и многих других дисциплин готовят почву для нового синтеза в истории эволюционизма.Книга насыщена массой интересных и поучительных исторических подробностей, как правило, малоизвестных, и содержит большое число иллюстраций, как авторских, так и взятых из труднодоступных изданий. Книга рассчитана на широкого читателя, не только биолога, но любого, интересующегося современной наукой ее историей.

Николай Николаевич Воронцов

Биология, биофизика, биохимия