Развиваемые А.Т. Фоменко методы анализа нарративных текстов позволили дать количественные ответы на ряд вопросов, представляющих интерес для историков. В частности, оказалось возможным математически корректно поставить следующую интересную историческую проблему. Известно, что многие древние исторические источники (летописи, хроники и т. д.) составлены из отдельных фрагментов (кусков) разной природы. Например, эти отдельные куски могли быть написаны в разное время разными авторами (в разных странах), а потому могут существенно отличаться друг от друга своим характером, языком и стилем изложения, степенью подробности, эмоциональной окраской и т. д. Затем могло случиться так, что эти фрагменты были объединены каким-то более поздним хронистом в одну книгу. После этого первоначальное происхождение фрагментов забывалось, и они начинали существовать как единая летопись. С течением времени в результате многократной переписки книг, под влиянием различных «редакторов» и в силу многих других причин, первоначальные внешние различия между отдельными фрагментами постепенно стирались.
Возникает естественный и важный (прежде всего для историка) вопрос: можно ли, опираясь на статистический анализ различных частотных характеристик, выявить сегодня внутри «единого большого текста» эти первичные составные части, куски, то есть можно ли вновь «разрезать» большой текст на его первичные древние фрагменты-первоисточники?
А.Т. Фоменко и А.Н. Ширяев высказали гипотезу, что каждый отдельный фрагмент является стохастически однородным, точнее, представляет собой (если его перевести в числовую последовательность, что мы здесь предполагаем уже выполненным — вопрос о том, как это сделать, обсуждается в Дополнении 2) отрезок стационарного временного ряда, причем разные фрагменты отвечают разным стационарным рядам, отличающимся друг от друга теми или иными вероятностными характеристиками.
Эта гипотеза оказалась полезной при анализе конкретных исторических текстов. Соответствующие результаты содержатся в Дополнении 2. Здесь же мы подробнее остановимся на идеологии решения возникающего класса статистических задач.
Эту область математической статистики можно назвать так: методы обнаружения изменений вероятностных свойств случайных процессов и полей. Речь идет о следующих двух классах проблем.
ПЕРВОЕ. Пусть предъявлена выборка (реализация) случайного процесса (поля). Всякая статистическая обработка этой выборки с целью построения модели, оценки параметров и т. п. основана на предположении (оно лежит в основе математической статистики), что оцениваемый феномен в процессе сбора данных не изменялся. Поэтому предварительным этапом любой статистической обработки должен быть этап проверки подобной однородности. Таким образом, вопрос здесь ставится так: является ли предъявленная выборка статистически однородной в смысле неизменности своих вероятностных характеристик? Если ответ на этот вопрос положителен, то далее следует заниматься обычной статистической обработкой в зависимости от тех целей, которые ставит исследователь. Если же ответ отрицателен, то возникает задача обнаружения моментов изменения вероятностных характеристик и разбиения исходной выборки на несколько статистически однородных кусков.
Описанный класс задач получил название ретроспективных (апостериорных) задач о «разладке». Поясним, что «разладка» — это краткий термин для любого изменения вероятностных характеристик.
ВТОРОЙ класс проблем описывается следующим образом. Пусть информация о случайном процессе (его измерение) поступает последовательно во времени. Допустим, что в некоторый, заранее неизвестный, момент происходит изменение какой-либо вероятностной характеристики процесса (в общем случае, какой-либо функции распределения). Спрашивается, как обнаружить произошедшее изменение скорейшим образом после того, как оно возникло (ясно, что сделать это заранее — «предсказать будущее» — в принципе нельзя), но так, чтобы при этом ложные сигналы тревоги не были слишком частыми. Частота таких сигналов может быть ограничена заданной величиной. Эта задача получила название задачи о скорейшем обнаружении «разладки».