Читаем Космические рубежи теории относительности полностью

Размышляя о реальных чёрных дырах, которые могли бы реально существовать в нашей Вселенной, физики пришли к заключению, что решение Райснера-Нордстрёма оказывается не очень существенным, ибо электромагнитные силы намного больше сил тяготения. Например, электрическое поле электрона или протона в триллионы триллионов раз сильнее их гравитационного поля. Это значит, что если у чёрной дыры был бы достаточно большой заряд, то огромные силы электромагнитного происхождения быстро разбросали бы во все стороны газ и атомы, «плавающие» в космосе. В самое короткое время частицы, имеющие такой же знак заряда, как и чёрная дыра, испытали бы мощное отталкивание, а частицы с противоположным знаком заряда - столь же мощное притяжение к ней. Притягивая частицы с зарядом противоположного знака, чёрная дыра вскоре стала бы электрически нейтральной. Поэтому можно полагать, что реальные чёрные дыры обладают зарядом лишь малой величины. Для реальных чёрных дыр значение |Q| М. В самом деле, из расчётов следует, что чёрные дыры, которые могли бы реально существовать в космосе, должны иметь массу М по крайней мере в миллиард миллиардов раз большую, чем величина |Q|. Математически это выражается неравенством М >>|Q|.

Несмотря на эти, увы, прискорбные ограничения, налагаемые законами физики, весьма поучительно провести подробный анализ решения Райснера-Нордстрёма. Такой анализ подготовит нас к более основательному обсуждению решения Керра в следующей главе.

Чтобы проще подойти к пониманию особенностей решения Райснера-Нордстрёма, рассмотрим обычную чёрную дыру без заряда. Как следует из решения Шварцшильда, такая дыра состоит из сингулярности, окруженной горизонтом событий. Сингулярность расположена в центре дыры (при r = 0), а горизонт событий - на расстоянии 1 шварцшильдовского радиуса (именно при r =2М). Теперь представим себе, что мы придали этой чёрной дыре небольшой электрический заряд. Как только у дыры Появился заряд, мы должны обратиться к решению Райснера-Нордстрёма для геометрии пространства-времени. В решении Райснера-Нордстрёма имеются два горизонта событий. Именно, с точки зрения удалённого наблюдателя, существуют два положения на разных расстояниях от сингулярности, где время останавливает свой бег. При самом ничтожном заряде горизонт событий, находившийся ранее на «высоте» 1 шварцшильдовского радиуса, сдвигается немножко ниже к сингулярности. Но ещё более удивительно то, что сразу же вблизи сингулярности возникает второй горизонт событий. Таким образом сингулярность в заряженной чёрной дыре окружена двумя горизонтами событий - внешним и внутренним. Структуры незаряженной (шварцшильдовской) чёрной дыры и заряженной чёрной дыры Райснера-Нордстрёма (при М >> |Q|) сопоставлены на рис. 10.2.

РИС. 10.2. Заряженные и нейтральные чёрные дыры. Добавление хотя бы ничтожного по величине заряда приводит к появлению второго (внутреннего) горизонта событий прямо над сингулярностью.

Если мы будем увеличивать заряд чёрной дыры, то внешний горизонт событий станет сжиматься, а внутренний - расширяться. Наконец, когда заряд чёрной дыры достигнет значения, при котором выполняется равенство М = |Q| оба горизонта сливаются друг с другом. Если увеличить заряд ещё больше, то горизонт событий полностью исчезнет, и остаётся «голая» сингулярность. При М < |Q| горизонты событий отсутствуют, так что сингулярность открывается прямо во внешнюю Вселенную. Такая картина нарушает знаменитое «правило космической этики», предложенное Роджером Пенроузом. Это правило («нельзя обнажать сингулярность!») будет подробнее обсуждаться ниже. Последовательность схем на рис. 10.3 иллюстрирует расположение горизонтов событий у чёрных дыр, имеющих одну и ту же массу, но разные значения заряда.

РИС. 10.3. Изображение заряженных чёрных дыр в пространстве. По мере добавления заряда в чёрную дыру внешний горизонт событий постепенно сжимается, а внутренний - расширяется. Когда полный заряд дыры достигает значения |Q| = М, оба горизонта сливаются в один. При ещё больших значениях заряда горизонт событий вообще исчезает и остаётся открытая, или «голая», сингулярность.

Перейти на страницу:

Похожие книги