Мы все — явно и неявно — постоянно используем вероятности. Но вопрос о том, что вероятности в точности означают,
мучит ученых довольно давно. Путаница, как это часто бывает, в основном происходит из-за того, что существуют два противоположных подхода[65] к тому, откуда берутся вероятности.Согласно первой точке зрения, вероятности можно считать совершенно объективными величинами — в том смысле, что они действительно всегда соответствуют относительным частотам
реализации определенных событий в ансамбле аналогичных систем. Мы рассматриваем бросок кости, как один из многих. Эти броски могут быть как последовательными, так и параллельными, реальными или воображаемыми, но их всегда много, и, следовательно, есть много возможных реализаций событий. В этом и состоит обоснование вероятности. Если у нас имеются 30 дней и 16 из них все стражники, кроме одного, спят, оценка шансов в 50 % на то, что только один стражник не спит, — как раз яркий пример этого «частотного» (на основе оценки частоты событий) способа мышления.При другом — противоположном — подходе вероятность всегда рассматривается как степень уверенности
в фактах, которой придерживается некоторый наблюдатель или агент. Вероятность выпадения одной грани кубика P = 1/6 относится и к системе, и к человеку, наблюдающему за ней, и ее можно выразить численно в терминах риска по ставкам: разумно поставить на то, что вверху окажется определенная грань кости, если предложенный выигрыш превышает пять к одному. Этот подход к определению вероятности часто называется байесовским (а иногда субъективистским). В байесовском методе сравниваются степени уверенности в альтернативных возможностях, а затем, по мере поступления новых данных, эти степени уверенности обновляются. Каждый день, когда суровый стражник оставался в одиночестве, увеличивал уверенность в том, что «сегодня ночью будет бодрствовать только один стражник», а каждая ночь, в которую два стражника бодрствуют, эту уверенность уменьшает.Оба подхода кажутся в каком-то смысле достаточно разумными, но имеют несколько странные следствия, если считать их непреложными. Не подлежит сомнению, что при возникновении новых обстоятельств мы можем и должны менять уже закрепившиеся в сознании вероятности. Но это звучит как-то неловко с точки зрения сторонников частотного подхода к вероятности, ибо означает, что при использовании относительных частот мы постоянно меняем ансамбль, к которому эти частоты относятся. Но если ансамбль так легко меняется, приспосабливаясь к нашим прихотям и новым представлениям, то насколько такой подход вообще объективен? А с байесовской точки зрения выходит вот что: если все существенные проявления физического мира, которые мы ощущаем, являются вероятностными по своей природе, а вероятности — это просто мера доверия, не значит ли это, что объективного физического мира вообще не существует?
Данная противоречивость сохраняется частично из-за того, что оба подхода в основном применяют один и тот же основной математический аппарат,
описывающий вероятность, и обычно его можно использовать для перевода утверждений в рамках одного подхода в утверждения в рамках другого подхода. В то же время рассуждения на основе вероятностного подхода бывают довольно хитрыми, и эти различные понятия вероятности могут привести к довольно разным инструментариям и «допущениям», используемым при переводе проблем реального мира на язык вероятностей. Если рассматривается наш вопрос о том «как долго еще стражник будет отсутствовать», то понять, как превратить набор данных в вероятности исхода, весьма нелегко. При таком трудном выборе нужно учесть множество факторов — например, насколько важно то, что перерыв стражника длится дольше обычного, а если это и впрямь важно, то как это учесть?Эти разные подходы к определению вероятностей (помимо практических различий между ними) соответствуют разным взглядам на саму реальность. До какой степени мир таков, каким он является на самом деле —
то есть независимым от нас, а в какой степени он создается наблюдателем, который проводит испытания, ищет объяснения и воздействует на него? Различие становится особенно тонким, когда речь идет о вероятностном описании мира P(s), в котором ничего не исчезает. В частности, в ходе эволюции самой системы ничто не может пропасть или быть в нее привнесено, а вот мы можем потерять или добавить информацию об этой системе. Если, например, мы сделаем очень подробные измерения системы и убедимся, что она находится в состоянии S, тогда, независимо от того, какая вероятность P была до измерений, мы скажем, что вероятность P(s), оцененная после измерений для состояния s = S, будет равна 100 % и нулю для всех остальных состояний.