Если в общем случае
такой унитарный оператор существует для физических законов, то это значит, что прав Ленни Сасскинд, писавший: «В принципе вы всегда можете достаточно внимательно присмотреться к объектам и определить с бесконечной точностью, что с ними происходило раньше, прокрутив их историю в обратном направлении»[62]. Труды Платона и Гипатии в действительности не потеряны, поскольку траектории всех частиц, из которых состояли папирусные свитки, можно в принципе направить в обратном направлении для того, чтобы реконструировать исходные книги. Даже если бы нам пришлось сжечь одну из книг Платона, дым, пепел и тепло, состоящие из атомов, фотонов и прочего, все равно подчинялись бы правилу унитарности, как и вся окружающая книги среда. Хотя на практике, скорее всего, восстановить книгу невозможно — в силу тех же самых обстоятельств, которые мешают джинну точно предсказать будущее, — книги все-таки останутся здесь, с нами, закодированные и впечатанные в текущее состояние Вселенной (так же как и спрятанное там, по утверждениям джинна, будущее). Ничто не будет утеряно бесследно.Но описание мира не ограничивается классической физикой. Что если мы опишем мир с помощью квантовой механики (а мы обязательно должны это сделать, если хотим быть добросовестными)? Или же что будет, если мы станем описывать мир классически, но допустим (и это мы тоже должны сделать!), что у нас есть некоторая неопределенность
при описании состояния, в котором мир находится? В обоих случаях мы обнаруживаем очень хитрую и интересную комбинацию: мир, какой он есть, в некоем смысле одновременно унитарный и детерминистский и не унитарный и не детерминистский!Возьмем классическую систему, для которой мы знаем только вероятности состояний — например, пятидесятипроцентную вероятность того, что кость находится на высоте 10,1 см над столом, и такую же вероятность того, что кость находится на высоте 10,2 см. Мы можем обозначить их как P(s)
— вероятность, приписываемая каждому состоянию s. Теперь, если мы посмотрим на кость (быстро и внимательно) и увидим, что с большой вероятностью она находится на высоте 10,2 см, мы сможем считать, что, скажем, P(10,2 см) = 99 %, а P(10,1 см) = 1 %. Это изменение в P(s) было скачкообразным и непредсказуемым по определению, так как если бы мы могли это предсказать, то не стали бы вначале приписывать этим состояниям пятидесятипроцентные вероятности. И когда мы уже получили вероятности после наблюдения, у нас не осталось никакого способа (кроме, разве что, воспоминания) «восстановить» тот факт, что сначала неопределенность считалась нами равной 50–50 или 25–75 либо какой-нибудь еще. Таким образом, мы обнаружили и недетерминизм, и неунитарность.Аналогично, мы видели, что квантовая механика — недетерминистская наука в смысле измерений свойств системы: когда вы задаете системе вопрос, на который у нее нет определенного ответа, вы получаете неопределенный (недетерминированный) ответ. Более того, делая это, вы меняете состояние довольно скачкообразно и необратимо, так как различные
состояния до измерений могут дать одно и то же состояние при измерениях. Таким образом, вы не можете однозначно перевести то состояние, в котором система оказалась после произведения измерения, обратно в то единственное, в котором она находилась до того, как вы задали вопрос. Это означает, что данный процесс еще и не унитарный. Положение любой заданной молекулы дыма от сгоревшего папирусного свитка книги Платона представляло бы собой суперпозицию ее местоположений, а как только мы бы его определили, часть сведений о том, где она была раньше, исчезла бы.Однако в таких системах есть и другой источник потери информации. Представим себе, что квантовое состояние эволюционирует с помощью уравнения Шрёдингера, или
что классические вероятности P (s) эволюционируют в процессе действий симулятора, который мы использовали при расчетах поведения брошенной кости. В начале броска вероятность кости находиться в руке с различными ориентациями граней очень велика, а вероятность того, что она лежит на столе, мала. Но со временем вероятности изменяются и распределяются равномерно между состояниями лежащей на столе кости с разными цифрами на ее верхней грани.