Читаем Красота физики. Постигая устройство природы полностью

Трансляция или смещение во времени – преобразование, которое сдвигает времена событий на один и тот же временной интервал. Трансляционная симметрия времени – это гипотеза о том, что законы физики неизменны, или, как мы говорим, инвариантны, при таком преобразовании. Трансляционная симметрия времени – строгий способ сформулировать идею о том, что законы физики одинаковы на протяжении всей истории. Трансляционная симметрия времени тесно связана с сохранением энергии через теорему Эмми Нётер.

Трансляционная (сдвиговая) симметрия пространства

Spatial translation symmetry

Пространственная трансляция (или параллельный перенос, или сдвиг) – преобразование, которое изменяет положение точек в пространстве на одинаковое смещение. Трансляционная симметрия пространства – это гипотеза о том, что законы физики неизменны или, как мы говорим, инвариантны, при таком преобразовании. Трансляционная симметрия пространства – строгий способ сформулировать идею о том, что законы физики одинаковы повсюду. Трансляционная симметрия пространства тесно связана с сохранением импульса через теорему Эмми Нётер.

Трансляция (сдвиг)

Translation

Смещение всех точек системы на одну и ту же величину в пространстве или во времени. См. Трансляционная (сдвиговая) симметрия пространства и Трансляционная (сдвиговая) симметрия времени.

Угол Кабиббо

См. Семейство.

Уравнение Дирака

Dirac equation

В 1928 г. Поль Дирак (1902–1984) предложил динамическое уравнение, описывающее поведение электронов в квантовой механике, которое мы теперь называем уравнением Дирака. Уравнение Дирака уточняет более раннее уравнение Шрёдингера для электрона примерно так же, как уравнения Эйнштейна для механики уточняют уравнения Ньютона. В обоих случаях новые уравнения согласуются со специальной теорией относительности, в то время как те более простые, которые они заменили, с ней не согласуются. (И в обоих случаях новые уравнения повторяют предсказания старых при описании поведения тел, движущихся со скоростями, много меньшими скорости света.)

Уравнение Дирака имеет дополнительные решения, кроме тех, что представляют электроны в разных состояниях движения (и спина). Эти решения описывают частицы с такой же массой, как у электронов, но с противоположным электрическим зарядом. Эти новые частицы называются антиэлектронами, или позитронами. Позитроны были экспериментально открыты в 1932 г. Карлом Андерсоном благодаря изучению космических лучей. См. также Антивещество.

Уравнение Дирака, с соответствующими (относительно незначительными) изменениями, описывает не только поведение электронов, но также и поведение других фундаментальных частиц со спином ½, включая все кварки и лептоны, – другими словами, частиц вещества, как они именуются в основном тексте. С немного более значительными изменениями оно также описывает поведение адронов со спином ½, включая протоны и нейтроны.

Уравнение Шрёдингера

Schrödinger equation

Уравнение Шрёдингера было предложено Эрвином Шрёдингером (1887–1961) в 1925 г. Это динамическое уравнение, которое определяет, как волновые функции электронов или других частиц изменяются во времени.

Уравнение Шрёдингера является приблизительным в двух важных отношениях. Во-первых, оно основано на нерелятивистской (ньютоновской) механике, а не на релятивистской механике Эйнштейна. Поль Дирак в 1928 г. предложил другое уравнение для волновых функций электронов, которое подчиняется положениям специальной теории относительности (см. Уравнение Дирака). Во-вторых, оно не включает влияние квантовых флуктуаций, таких как виртуальные фотоны, на электроны. Тем не менее уравнение Шрёдингера достаточно точно для большинства практических применений квантовой теории в химии, материаловедении и биологии, и это именно та версия квантовой теории, которая обычно применяется при обсуждении этих дисциплин.

Хотя обычно говорят об «уравнении Шрёдингера», но Шрёдингер предоставил нам не просто одно уравнение, а скорее процедуру для вывода уравнений, описывающих различные ситуации, в которых применима квантовая механика.

Перейти на страницу:

Все книги серии Библиотека фонда «Династия»

Ружья, микробы и сталь
Ружья, микробы и сталь

Эта книга американского орнитолога, физиолога и географа Джареда Даймонда стала международным бестселлером и принесла своему создателю престижнейшую Пулитцеровскую премию, разом превратив академического ученого в звезду первой величины. Вопрос, почему разные регионы нашей планеты развивались настолько неравномерно, занимает сегодня очень многих — по каким причинам, к примеру, австралийские аборигены так и не сумели выйти из каменного века, в то время как европейцы научились производить сложнейшие орудия, строить космические корабли и передавать накопленные знания следующим поколениям? Опираясь на данные географии, ботаники, зоологии, микробиологии, лингвистики и других наук, Даймонд убедительно доказывает, что ассиметрия в развитии разных частей света неслучайна и опирается на множество естественных факторов — таких, как среда обитания, климат, наличие пригодных для одомашнивания животных и растений и даже очертания и размер континентов. Приводя множество увлекательных примеров из собственного богатого опыта наблюдений за народами, которые принято называть «примитивными», а также из мировой истории, Даймонд выстраивает цельную и убедительную теорию, позволяющую читателю по-новому осмыслить скрытые механизмы развития человеческой цивилизации.

Джаред Даймонд , Джаред Мэйсон Даймонд

Культурология / История / Прочая научная литература / Образование и наука
Бог как иллюзия
Бог как иллюзия

Ричард Докинз — выдающийся британский ученый-этолог и популяризатор науки, лауреат многих литературных и научных премий. Каждая новая книга Докинза становится бестселлером и вызывает бурные дискуссии. Его работы сыграли огромную роль в возрождении интереса к научным книгам, адресованным широкой читательской аудитории. Однако Докинз — не только автор теории мемов и страстный сторонник дарвиновской теории эволюции, но и не менее страстный атеист и материалист. В книге «Бог как иллюзия» он проявляет талант блестящего полемиста, обращаясь к острейшим и актуальнейшим проблемам современного мира. После выхода этой работы, сегодня уже переведенной на многие языки, Докинз был признан автором 2006 года по версии Reader's Digest и обрел целую армию восторженных поклонников и непримиримых противников. Споры не затихают. «Эту книгу обязан прочитать каждый», — считает британский журнал The Economist.

Ричард Докинз

Научная литература

Похожие книги

Зачем нужна геология: краткая история прошлого и будущего нашей планеты
Зачем нужна геология: краткая история прошлого и будущего нашей планеты

Каков риск столкновения астероида с Землей? Почему температура океана миллионы лет назад имеет значение сегодня? В увлекательном и доступном изложении Дуг Макдугалл дает обзор удивительной истории Земли, основанный на информации, извлеченной из природных архивов. Мы обнаруживаем, что наука о земле фактически освещает многие из наиболее насущных проблем сегодняшнего дня — доступность энергии, доступ к пресной воде, сельское хозяйство. Но более того, Макдугалл ясно дает понять, что наука также дает важные ключи к будущему планеты.Дуг Макдугалл — писатель, ученый-геолог и педагог. Почетный профессор в Институте океанографии Калифорнийского университета, где в течение многих лет преподавал и проводил исследования в области геохимии. Заядлый путешественник, его исследования провели его по всему миру, от Сибири и канадской Арктики до южной Индии, Китая и дна Тихого океана.

Дуг МакДугалл

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Математика космоса. Как современная наука расшифровывает Вселенную
Математика космоса. Как современная наука расшифровывает Вселенную

Как математические модели объясняют космос? Иэн Стюарт, лауреат нескольких премий за популяризацию науки, представляет захватывающее руководство по механике космоса в пределах от нашей Солнечной системы и до всей Вселенной. Он описывает архитектуру пространства и времени, темную материю и темную энергию, рассказывает, как сформировались галактики и почему взрываются звезды, как все началось и чем все это может закончиться. Он обсуждает параллельные вселенные, проблему тонкой настройки космоса, которая позволяет жить в нем, какие формы может принимать внеземная жизнь и с какой вероятностью наша земная может быть сметена ударом астероида.«Математика космоса» — это волнующий и захватывающий математический квест на деталях внутреннего мира астрономии и космологии.Издание подготовлено в партнерстве с Фондом некоммерческих инициатив «Траектория».

Йэн Стюарт

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература