Читаем Курс теоретической астрофизики полностью

При определении эквивалентных ширин межзвёздных линий поглощения выше мы считали, что скорости хаотического движения межзвёздного газа распределены по закону Максвелла. Однако из рассмотрения профилей линий поглощения получаются другие выражения для функции распределения скоростей (которая падает более медленно, чем функция Максвелла, с увеличением скорости). Иногда эти эмпирические выражения используются и при построении теоретических кривых роста.

Необходимо ещё отметить, что межзвёздный газ участвует в галактическом вращении. Этот эффект сказывается на профилях межзвёздных линий поглощения при больших расстояниях до звёзд, причём он различен для разных направлений. При построении теоретических кривых роста его также необходимо принимать во внимание.

4. Физическое состояние межзвёздного газа.

Как мы видели выше, межзвёздный газ является чрезвычайно разреженным. По свечению газа в зонах H II было найдено, что в 1 см^3 межзвёздного пространства находится в среднем всего 1 атом водорода. Примерно такой же результат получается и по межзвёздным линиям поглощения. Правда, в этом случае непосредственно из наблюдений находится концентрация других атомов (в частности, натрия и кальция) и при переходе к концентрации атомов водорода приходится делать предположения об относительном содержании, элементов в межзвёздном пространстве. Очень подробные сведения о концентрации межзвёздного водорода и о его распределении в пространстве дают наблюдения галактического радиоизлучения с длиной волны 21 см, о чем будет сказано в следующем параграфе.

Рассмотрим теперь кратко вопрос о температуре межзвёздного газа. В зонах H II температура определяется методами, изложенными в гл. V, и оказывается порядка 10 000 K. Для нахождения температуры в зоне H I также может быть применён один из указанных методов, основанный на рассмотрении энергетического баланса газа. Однако в зоне H I газ приобретает и расходует энергию иначе, чем в зоне H II. Как мы помним, в зоне H II нагревание газа происходит в основном при фотоионизации атомов водорода (и отчасти атомов гелия). Но в зоне H I ионизуются лишь те атомы, потенциал ионизации которых меньше 13,6 эВ. При этом, как показывают простые оценки, больше всего энергии газ получает при ионизации атомов углерода (потенциал ионизации которого равен 11,3 эВ). А так как число атомов углерода приблизительно в 10 раз меньше числа атомов водорода, то единичный объём газа в зоне H I получает гораздо меньше энергии, чем в зоне H II. Вследствие этого в зоне H I играют роль такие механизмы охлаждения газа, которые совершенно не существенны в зоне H II. Из них на первое место надо поставить электронные столкновения, возбуждающие уровни тонкой структуры основных термов некоторых ионов (в частности, C II и Fe II). Из сказанного следует, что температура газа в зоне H I должна быть весьма низкой.

Более подробное рассмотрение вопроса показывает, что нагревание газа в зоне H I вызывается не столько излучением звёзд, сколько космическими лучами и рентгеновским излучением от различных источников. Учёт этих механизмов нагрева в уравнении энергетического баланса приводит к температуре газа порядка 30—80 K. Эта температура относится к облакам межзвёздного газа. Между же облаками, где плотность гораздо меньше, температура должна быть порядка 5000—7000 K. Эти теоретические заключения подтверждаются измерением профилей межзвёздной линии водорода с длиной волны 21 см.

При условиях, существующих в зонах нейтрального водорода, в них должно присутствовать значительное число разных молекул. При термодинамическом равновесии концентрация молекул определяется формулой (14.20). Так как в межзвёздном пространстве нет термодинамического равновесия, то для нахождения концентрации молекул приходится использовать условие равенства между числом образующихся и числом диссоциирующих молекул. Таким путём, в частности, найдено, что в межзвёздных облаках должно быть много молекул водорода H. Однако эти молекулы в течение долгого времени не были обнаружены, так как все их линии, возникающие из основного состояния, расположены в ультрафиолетовой области спектра. Лишь при внеатмосферных наблюдениях с борта космических аппаратов эти линии удалось зарегистрировать. По их эквивалентным ширинам получено, что количество молекул водорода H составляет заметную долю количества атомов водорода H (порядка 5—50%).

Кроме молекулы H, при наблюдениях в видимой и ультрафиолетовой областях спектра обнаружены в межзвёздном пространстве также молекулы CH, CH, C, CO. Линии очень многих молекул наблюдаются в радиодиапазоне (о них см. ниже).

5. Движение межзвёздного газа.

Перейти на страницу:

Похожие книги

Занимательно об астрономии
Занимательно об астрономии

Попробуйте найти сегодня что-нибудь более захватывающее дух, чем астрономические открытия. Следуют они друг за другом, и одно сенсационнее другого.Астрономия стала актуальной. А всего двадцать лет назад в школе она считалась необязательным предметом.Зато триста лет назад вы рисковали, не зная астрономии, просто не понять сути даже обычного светского разговора. Так он был насыщен не только терминологией, но и интересами древней науки.А еще два века назад увлечение звездами могло окончиться для вас… костром.Эта книга — об астрономии и немного об астронавтике, о хороших астрономах и некоторых астрономических приборах и методах. Словом, о небольшой области гигантской страны, в основе названия которой лежит древнее греческое слово «astron» — звезда.

Анатолий Николаевич Томилин

Астрономия и Космос / Физика / Образование и наука