Читаем Курс теоретической астрофизики полностью

Как показывают наблюдения межзвёздных линий поглощения, газовые облака в межзвёздном пространстве движутся со скоростями порядка 10 км/с. Наблюдения светящихся газовых облаков приводят приблизительно к таким же результатам. В этом случае скорости движения облаков определяются по смещению эмиссионных линий в их спектрах. Вместе с тем внутри облаков существуют и беспорядочные (турбулентные) движения. Это проявляется в том, что лучевые скорости разных элементов газового облака различны. В частности, внутренние движения были подробно изучены в случае туманности Ориона. Оказалось, что средняя скорость таких движений порядка 7 км/с.

Исследование движения межзвёздного газа производится методами газовой динамики (см. [6] и [7]). Здесь мы отметим лишь некоторые результаты.

Если газовое облако находится в вакууме, то оно, естественно, должно расширяться. Как показал Риман, скорость расширения равна

v

=

2vs

2-1

(33.31)

где vs — скорость звука и — показатель адиабаты.

Скорость звука, как известно, даётся формулой

v

s

=

kT

mH

1/2

,

(33.32)

где — средняя молекулярная масса. Межзвёздный газ является в основном одноатомным, вследствие чего =/. Можно считать, что =1 и T=100 K в зоне H I и = 1/2 и T=10 000 K в зоне H I. Поэтому для скорости звука в этих зонах получаем значения vs=1,2 км/с и vs=19 км/с соответственно.

При указанных значениях и vs из формулы (33.31) следует, что облако ионизованного водорода должно расширяться в пустоту со скоростью порядка 60 км/с. Очевидно, что приблизительно с такой же скоростью будет происходить расширение и тогда, когда плотность облака гораздо больше плотности окружающей среды. Однако обычно плотность зоны H II не отличается значительно от плотности примыкающей к ней зоны H I. В этом случае зона H II будет расширяться медленнее, однако она всё-таки должна расширяться вследствие большой разницы давлений в этих зонах, вызванной разницей температур. Расширение горячего газа зоны H II приводит в движение холодный газ зоны H I и сжимает его. Вместе с тем при этом уменьшается плотность горячего газа и он становится прозрачнее для излучения звезды в лаймановском континууме. Это излучение проникает в сжатый холодный газ и вызывает его ионизацию. Благодаря такому процессу во внешнем слое зоны H II должен находиться более плотный газ и он должен светиться ярче газа во внутренних частях. Как показывают наблюдения, зоны H II, действительно, часто ограничены светлыми ободками.

Характерной чертой движения межзвёздного газа является образование ударных волн. Это объясняется тем, что скорости движения газа в межзвёздном пространстве часто превосходят скорость звука (особенно в зонах H I). Возникновение ударных волн может происходить при различных процессах: при расширении зоны H II (или, как иногда говорят, при движении ионизационного фронта), при встречах межзвёздных облаков, при движении оболочек, выброшенных при вспышках новых и сверхновых звёзд.

Приведём некоторые формулы, описывающие явления, происходящие при распространении ударной волны. Пусть плотное облако (или оболочка) движется со скоростью v в межзвёздном неионизованном газе. Перед облаком будет находиться сжатый газ, движущийся с той же скоростью v. Граница между сжатым и несжатым газом, называемая фронтом ударной волны, движется со скоростью V, превосходящей v. Если ударная волна распространяется в идеальном одноатомном газе, то, как показывают расчёты,

V

=

4

3

v

,

(33.33)

а плотность сжатого газа в четыре раза больше плотности несжатого газа. При сжатии газа происходит также повышение его температуры до значения, определяемого формулой

3

2

kT

=

mHv^2

2

.

(33.34)

Очевидно, что нагревание газа и сообщение ему движения происходит за счёт кинетической энергии облака, которое постепенно тормозится. Однако при получении приведённых формул не был принят во внимание тот факт, что нагретый сжатый газ может охлаждаться. Это охлаждение происходит вследствие того, что атомы возбуждаются при столкновениях со свободными электронами, а затем испускают кванты в спектральных линиях, выходящие из газа. Такой процесс представляет собой высвечивание газа. Структура ударных волн с высвечиванием впервые была рассмотрена С. Б. Пикельнером [3], а затем и другими авторами. Результаты этой теории отличаются от указанных выше. В частности, было найдено, что плотность сжатого газа может в десятки раз превзойти его первоначальную плотность. Возможно, что свечение некоторых диффузных туманностей объясняется высвечиванием газа после прохождения ударной волны.

Существующие в Галактике турбулентные движения газа изучаются особыми статистическими методами. В простейшем случае считается, что турбулентное движение характеризуется хаотическим перемещением газовых масс, при котором энергия движений больших масштабов полностью передаётся движениям меньших масштабов, превращаясь в конце концов в тепловую энергию. В этом случае, согласно А. Н. Колмогорову, относительная скорость движения турбулентных масс v связана с расстоянием между ними l соотношением

v

(l)^1

/

^3

.

(33.35)

Перейти на страницу:

Похожие книги

Занимательно об астрономии
Занимательно об астрономии

Попробуйте найти сегодня что-нибудь более захватывающее дух, чем астрономические открытия. Следуют они друг за другом, и одно сенсационнее другого.Астрономия стала актуальной. А всего двадцать лет назад в школе она считалась необязательным предметом.Зато триста лет назад вы рисковали, не зная астрономии, просто не понять сути даже обычного светского разговора. Так он был насыщен не только терминологией, но и интересами древней науки.А еще два века назад увлечение звездами могло окончиться для вас… костром.Эта книга — об астрономии и немного об астронавтике, о хороших астрономах и некоторых астрономических приборах и методах. Словом, о небольшой области гигантской страны, в основе названия которой лежит древнее греческое слово «astron» — звезда.

Анатолий Николаевич Томилин

Астрономия и Космос / Физика / Образование и наука