Читаем Курс теоретической астрофизики полностью

Для определения плотностей и масс туманностей по формулам (24.18) и (24.19) необходимо знать расстояния до них. Однако расстояния до планетарных туманностей известны плохо, вследствие чего их плотности и массы находятся с некоторыми ошибками. Обозначая через 𝑅 расстояние до туманности, мы из упомянутых формул видим, что ρ~𝑅⁻¹/² и ρ~𝑀⁵/². Следовательно, ошибка в расстоянии влияет мало на значение плотности, но очень сильно — на значение массы.

Интересно отметить, что слабая зависимость 𝑅 от 𝑀 позволила И. С. Шкловскому использовать формулу (24.19) для определения расстояний до планетарных туманностей при предположении о постоянстве их масс. Мы, очевидно, имеем


𝑉

~

𝑟³

~

𝑅³φ³


и


𝐿

~

𝑟²𝐼

~

𝑅²φ²𝐼

,


где 𝑟 — радиус туманности, φ — её радиус в угловой мере, 𝐼 — поверхностная яркость туманности. Поэтому из формулы (24.19) получаем


𝑅

~

𝑀²/

φ𝐼¹/

.


(24.21)


Пользуясь формулой (24.21), И. С. Шкловский составил каталог расстояний до планетарных туманностей. При этом коэффициент пропорциональности в формуле (24.21) был определён при помощи статистических параллаксов. Кроме того, как уже сказано, масса 𝑀 считалась постоянной для всех туманностей. Однако даже для одной туманности величина 𝑀 меняется с возрастанием зоны 𝙷 II по мере расширения туманности. Лишь для туманностей с небольшой оптической толщиной в лаймановском континууме величина 𝑀 остаётся постоянной с течением времени. Поэтому упомянутый каталог относится именно к этим туманностям.

Для некоторых из ближайших к нам туманностей удалось определить расстояния тригонометрическим путём. Они оказались в удовлетворительном согласии с расстояниями, найденными по формуле (24.21). Это говорит о том, что массы планетарных туманностей не очень сильно различаются между собой.

§ 25. Запрещённые линии

1. Необходимые условия для появления запрещённых линий.

В спектрах газовых туманностей присутствует много запрещённых линий, принадлежащих разным атомам и ионам: 𝙾 I, 𝙾 II, 𝙾 III, 𝙽 I, 𝙽 II, 𝚂 II и др. Наиболее интенсивными из них являются главные небулярные линии 𝙽₁ и 𝙽₂ дважды ионизованного кислорода (с длинами волн 5006 и 4959 Å соответственно). Из других запрещённых линий следует отметить линию 4363 Å дважды ионизованного кислорода, фиолетовый дублет 3726 и 3729 Å однажды ионизованного кислорода, красный дублет 6548 и 6584 Å однажды ионизованного азота. Схемы энергетических уровней упомянутых ионов приведены на рис. 32.

Рис. 32

Как известно, «запрещённые» линии отличаются от «разрешённых» линий крайней малостью вероятностей переходов. Эйнштейновские коэффициенты вероятности спонтанных переходов для разрешённых линий порядка 10⁸ с⁻¹, для запрещённых линий они в миллионы и миллиарды раз меньше. В табл. 36 даны для примера значения коэффициентов вероятности спонтанных переходов для некоторых запрещённых линий ионов 𝙾 III, 𝙽 II и 𝙾 I (вычисленные Гарстангом).

В обычных звёздных спектрах запрещённые линии не наблюдаются. В спектрах же газовых туманностей они сравнимы по интенсивности с разрешёнными линиями. Чем же вызвано это различие?

Как мы помним, запрещённые линии (принадлежащие, правда, совсем другим ионам) присутствуют также в спектре солнечной короны. При рассмотрении короны (в § 17) мы выяснили условия, которые необходимы для появления запрещённых линий. Очевидно, что подобные условия должны осуществляться и в газовых туманностях.


Таблица 36


Коэффициенты вероятностей


спонтанных переходов


для некоторых запрещённых линий


Переход

𝙾 III

𝙽 II

𝙾 I


λ, Å

𝐴

λ, Å

𝐴

λ, Å

𝐴


³𝑃₂ - ¹𝐷₂

5006,84

0,021

6583,4

0,0030

6300,23

0,0069


³𝑃₁ - ¹𝐷₂

4958,91

0,0071

6548,1

0,00103

6363,88

0,0022


³𝑃₀ - ¹𝐷₂

4931,0

1,9

10

⁻⁶

6527,4

4,2

10

⁻⁷

6392

1,1

10

⁻⁶


¹𝐷₂ - ¹𝑆₀

4363,21

1,6

5754,8

1,08

5577,35

1,28


Как было установлено, интенсивные запрещённые линии могут возникать только из метастабильных состояний, т.е. из таких, из которых нет других переходов вниз, кроме запрещённых (в противном случае гораздо чаще происходят разрешённые переходы, чем запрещённые). Но продолжительность жизни атома в метастабильном состоянии очень велика (например, для иона 𝙾⁺⁺ в состоянии ¹𝐷₂, из которого испускаются линии 𝙽₁ и 𝙽₂, она равна 38 секундам). Следовательно, для того чтобы мог совершиться спонтанный переход из метастабильного состояния, необходимо, чтобы атом в течение длительного времени не был подвержен каким-либо возмущениям: ни воздействию излучения, ни столкновениям. Это значит, что для появления запрещённых линий необходимы малая плотность излучения и малая плотность вещества.

Отсутствие запрещённых линий в звёздных спектрах говорит о том, что в атмосферах звёзд указанные условия не выполняются. Наоборот, на основании наличия многочисленных и весьма интенсивных запрещённых линий в спектрах газовых туманностей можно сделать вывод о крайне малой плотности излучения и плотности вещества в этих объектах.

Перейти на страницу:

Похожие книги

Занимательно об астрономии
Занимательно об астрономии

Попробуйте найти сегодня что-нибудь более захватывающее дух, чем астрономические открытия. Следуют они друг за другом, и одно сенсационнее другого.Астрономия стала актуальной. А всего двадцать лет назад в школе она считалась необязательным предметом.Зато триста лет назад вы рисковали, не зная астрономии, просто не понять сути даже обычного светского разговора. Так он был насыщен не только терминологией, но и интересами древней науки.А еще два века назад увлечение звездами могло окончиться для вас… костром.Эта книга — об астрономии и немного об астронавтике, о хороших астрономах и некоторых астрономических приборах и методах. Словом, о небольшой области гигантской страны, в основе названия которой лежит древнее греческое слово «astron» — звезда.

Анатолий Николаевич Томилин

Астрономия и Космос / Физика / Образование и наука
Мир в ореховой скорлупке
Мир в ореховой скорлупке

Один из самых блестящих ученых нашего времени, известный не только смелостью идей, но также ясностью и остроумием их выражения, Хокинг увлекает нас к переднему краю исследований, где правда кажется причудливее вымысла, чтобы объяснить простыми словами принципы, которые управляют Вселенной.Великолепные цветные иллюстрации служат нам вехами в этом странствии по Стране чудес, где частицы, мембраны и струны движутся в одиннадцати измерениях, где черные дыры испаряются, и где космическое семя, из которого выросла наша Вселенная, было крохотным орешком.Книга-журнал состоит из иллюстраций (215), со вставками текста. Поэтому размер ее больше стандартной fb2 книги. Иллюстрации вычищены и подготовлены для устройств с экранами от 6" (800x600) и более, для чтения рекомендуется CoolReader.Просьба НЕ пересжимать иллюстрации, т. к. они уже сжаты по максимуму (где-то Png с 15 цветами и более, где то jpg с прогрессивной палитрой с q. от 50–90). Делать размер иллюстраций меньше не имеет смысла — текст на илл. будет не читаемый, во вторых — именно по этой причине книга переделана с нуля, — в библиотеке была только версия с мелкими илл. плохого качества. Макс. размер картинок: 760(высота) x 570(ширина). Книга распознавалась с ~300mb pdf, часть картинок были заменены на идент. с сети (качество лучше), часть объединены т. к. иногда одна илл. — на двух страницах бум. книги. Также исправлена последовательность илл. в тексте — в рус. оригинале они шли на 2 стр. раньше, здесь илл. идет сразу после ссылки в тексте. Psychedelic

Стивен Уильям Хокинг

Астрономия и Космос