Читаем Курс теоретической астрофизики полностью

Условия, необходимые для появления запрещённых линий, могут быть выражены в виде некоторых неравенств. Для их получения рассмотрим атом, обладающий тремя энергетическими уровнями. При этом будем считать, что переход из второго состояния в первое запрещён (т.е. второе состояние метастабильное), а переходы из третьего состояния вниз разрешены. В таком случае 𝐴₂₁≪𝐴₃₁, 𝐴₃₂.

Возбуждение атома может происходить как под действием излучения, так и при столкновениях. Очевидно, что число возбуждений второго уровня будет по порядку таким же, как и число возбуждений третьего уровня. Следовательно, запрещённая линия по своей интенсивности будет сравнима с разрешёнными линиями, если из второго состояния будут в основном происходить спонтанные переходы.

Число спонтанных переходов из второго состояния в 1 см³ за 1 с равно 𝑛₂𝐴₂₁. Вместе с ними могут совершаться и переходы из второго состояния под действием излучения, из которых в данном случае гораздо чаще будут переходы вверх, чем вниз (так как коэффициенты 𝐵𝑖𝑘 пропорциональны коэффициентам 𝐴𝑘𝑖). Число переходов 2→3 при поглощении излучения равно 𝑛₂𝐵₂₃ρ₂₃ Следовательно, для того чтобы излучение не мешало спонтанным переходам из метастабильного состояния, должно выполняться условие


𝐴₂₁

𝐵₂₃ρ₂₃

.


(25.1)


Представим плотность излучения в виде ρ₂₃=𝑊ρ₂₃, где ρ₂₃ — плотность излучения в атмосфере звезды и 𝑊 — коэффициент дилюции излучения. Тогда вместо неравенства (25.1) получаем

Из второго состояния возможны также переходы при столкновениях со свободными электронами. Число ударов первого рода в 1 см³ за 1 с мы обозначим через 𝑛₂𝑏₂₃, а число ударов второго рода — через 𝑛₂𝑎₂₁. Так как удары первого рода могут производиться только теми электронами, энергия которых превосходит энергию возбуждения атома ℎν₂₃ а удары второго рода-—электронами с любой энергией, то обычно 𝑎₂₁≫𝑏₂₃. Таким образом, для того чтобы столкновения не препятствовали излучению квантов в запрещённой линии, должно выполняться неравенство


𝐴₂₁

𝑎₂₁

.


(25.3)


Величина 𝑎₂₁ может быть представлена в виде 𝑎₂₁=𝑛𝑒σ₂₁𝑣, где 𝑛𝑒 — концентрация свободных электронов, σ₂₁ — среднее эффективное сечение для ударов второго рода, 𝑣 — средняя скорость свободного электрона. Поэтому вместо (25.3) имеем


𝐴₂₁

𝑛

𝑒

σ₂₁𝑣

.


(25.4)


Неравенства (25.2) и (25.4) выражают собой условия, необходимые для появления запрещённых линий, сравнимых по интенсивности с разрешёнными линиями.

В газовых туманностях величины 𝑊 и 𝑛𝑒 чрезвычайно малы. Вследствие этого неравенства (25.2) и (25.4) выполняются даже для линий с очень малыми значениями 𝐴₂₁ т.е. запрещённых очень сильными правилами отбора.

По наличию запрещённых линий в спектре туманности при помощи приведённых неравенств можно оценить верхние пределы величин 𝑊 и 𝑛𝑒. Например, для линии 𝙽₁ и 𝙽₂ на основании табл. 36 имеем 𝐴₂₁=0,028 с⁻¹. Далее при грубой оценке можно принять: σ₂₁≈10⁻¹⁶ см², 𝑣≈10⁸ см/с. Поэтому из неравенства (25.4) получаем, что в туманности 𝑛𝑒≪10⁶ см⁻³. Разумеется, линии 𝙽₁ и 𝙽₂ будут видны и при 𝑛𝑒≈10⁶ см⁻³, но в этом случае населённость второго уровня уже будет уменьшаться ударами второго рода. При 𝑛𝑒≫10⁶ см⁻³ удары второго рода будут «гасить» эти линии.

Как мы видели, условия в туманностях таковы, что атомы, попавшие в метастабильное состояние, могут находиться в нём очень долго (до спонтанного перехода вниз). Поэтому в метастабильных состояниях должно накопиться огромное число атомов. Очевидно, что этот процесс должен происходить не только в туманностях, но и в других объектах с малыми значениями величин 𝑊 и 𝑛𝑒

Подчеркнём, что только благодаря накоплению атомов в метастабильных состояниях и излучаются интенсивные запрещённые линии, так как интенсивность линии пропорциональна числу атомов в исходном состоянии и вероятности соответствующего спонтанного перехода, а вероятности спонтанных переходов из метастабильных состояний очень малы.

Вместе с тем накопление атомов в метастабильных состояниях может приводить к возникновению линий поглощения, для которых эти состояния являются нижними уровнями. Примером может служить линия поглощения λ 3889 Å, имеющая нижним уровнем метастабильное состояние 2²S гелия. В частности, эта линия наблюдается в спектре звезды θ₁ Ориона, находящейся в туманности Ориона.

Вопрос об условиях, необходимых для появления запрещённых линий, и о накоплении атомов в метастабильных состояниях был подробно рассмотрен В. А. Амбарцумяном [6]. С этим вопросом приходится встречаться при изучении не только газовых туманностей, но и некоторых других объектов: оболочек новых звёзд, комет и т.д.

2. Вероятности столкновений.

Большинство запрещённых линий в спектрах газовых туманностей возникает вследствие возбуждения атомов электронным ударом. Поэтому для всех расчётов, связанных с излучением туманностей в запрещённых линиях, необходимо знать вероятности неупругих столкновений атомов со свободными электронами.

Перейти на страницу:

Похожие книги

Занимательно об астрономии
Занимательно об астрономии

Попробуйте найти сегодня что-нибудь более захватывающее дух, чем астрономические открытия. Следуют они друг за другом, и одно сенсационнее другого.Астрономия стала актуальной. А всего двадцать лет назад в школе она считалась необязательным предметом.Зато триста лет назад вы рисковали, не зная астрономии, просто не понять сути даже обычного светского разговора. Так он был насыщен не только терминологией, но и интересами древней науки.А еще два века назад увлечение звездами могло окончиться для вас… костром.Эта книга — об астрономии и немного об астронавтике, о хороших астрономах и некоторых астрономических приборах и методах. Словом, о небольшой области гигантской страны, в основе названия которой лежит древнее греческое слово «astron» — звезда.

Анатолий Николаевич Томилин

Астрономия и Космос / Физика / Образование и наука
Мир в ореховой скорлупке
Мир в ореховой скорлупке

Один из самых блестящих ученых нашего времени, известный не только смелостью идей, но также ясностью и остроумием их выражения, Хокинг увлекает нас к переднему краю исследований, где правда кажется причудливее вымысла, чтобы объяснить простыми словами принципы, которые управляют Вселенной.Великолепные цветные иллюстрации служат нам вехами в этом странствии по Стране чудес, где частицы, мембраны и струны движутся в одиннадцати измерениях, где черные дыры испаряются, и где космическое семя, из которого выросла наша Вселенная, было крохотным орешком.Книга-журнал состоит из иллюстраций (215), со вставками текста. Поэтому размер ее больше стандартной fb2 книги. Иллюстрации вычищены и подготовлены для устройств с экранами от 6" (800x600) и более, для чтения рекомендуется CoolReader.Просьба НЕ пересжимать иллюстрации, т. к. они уже сжаты по максимуму (где-то Png с 15 цветами и более, где то jpg с прогрессивной палитрой с q. от 50–90). Делать размер иллюстраций меньше не имеет смысла — текст на илл. будет не читаемый, во вторых — именно по этой причине книга переделана с нуля, — в библиотеке была только версия с мелкими илл. плохого качества. Макс. размер картинок: 760(высота) x 570(ширина). Книга распознавалась с ~300mb pdf, часть картинок были заменены на идент. с сети (качество лучше), часть объединены т. к. иногда одна илл. — на двух страницах бум. книги. Также исправлена последовательность илл. в тексте — в рус. оригинале они шли на 2 стр. раньше, здесь илл. идет сразу после ссылки в тексте. Psychedelic

Стивен Уильям Хокинг

Астрономия и Космос