Читаем Курс теоретической астрофизики полностью

Так как через атмосферу Венеры не видна поверхность планеты, то приближённо считается, что оптическая толщина атмосферы бесконечно велика (τ₀). Для определения других величин, характеризующих оптические свойства атмосферы (в частности, индикатрисы рассеяния 𝑥(γ) и параметра λ), следует использовать наблюдаемое распределение яркости по диску планеты при разных углах фазы. Для Венеры могут быть получены особенно обширные наблюдательные данные, так как в этом случае угол фазы (т.е. угол при планете между направлениями на Солнце и Землю) принимает все возможные значения — от 0° до 180° Заключения об оптических свойствах атмосферы Венеры можно сделать и на основании кривой изменения блеска планеты с углом фазы, чем мы сейчас и займёмся.

Рис. 26

Найдём теоретическую зависимость между звёздной величиной планеты 𝑚 и углом фазы α. Обозначим через μ₀ косинус угла падения солнечных лучей в данном месте планеты, через μ — косинус угла отражения и через φ — разность азимутов падающего и отражённого лучей. Введём планетоцентрические координаты ω и ψ (рис. 26). Очевидно, величины μ₀, μ, φ связаны с ω, ψ и α формулами


μ₀

=

cos

ψ

cos

(α-ω)

,



μ

=

cos

ψ

cos

ω

,


cos

α

=

μ₀

μ

-

(1-μ²)(1-μ₀²)

cos

φ

.


(20.1)


Пусть 𝑛𝐹 — освещённость площадки, перпендикулярной к лучам Солнца на верхней границе атмосферы планеты и ρ(μ,μ₀,φ) — коэффициент яркости атмосферы. Тогда интенсивность излучения, диффузно отражённого атмосферой, будет равна 𝐹ρ(μ,μ₀,φ)μ₀, а количество энергии, идущее от элемента площади 𝑑σ в единице телесного угла будет 𝐹ρ(μ,μ₀,φ)μμ₀ 𝑑σ. Так как 𝑑σ=𝑅²cos ψ 𝑑ψ 𝑑ω где 𝑅 — радиус планеты, то это количество энергии может быть записано в виде


𝐹𝑅²

ρ(μ,μ₀,φ)

cos(α-ω)

cos

ω

cos³ψ

𝑑ψ

𝑑ω

.


Чтобы получить полное количество энергии, идущее от Венеры в направлении Земли в единице телесного угла, надо проинтегрировать последнее выражение по ψ в пределах от -π/2 до +π/2 и по ω в пределах от α -π/2 до +π/2, т.е. от терминатора до края диска. Обозначая через Δ расстояние от Венеры до Земли, для освещённости Земли от Венеры находим


𝐸

𝑉

=

2𝐹

𝑅²

Δ²


π/2

α-π/2

cos(α-ω)

cos

ω

𝑑ω

×


×

π/2

0

ρ(μ,μ₀,φ)

cos³ψ

𝑑ψ

.


(20.2)


Очевидно, что освещённость Земли от Солнца равна 𝐸𝑇=π𝐹(𝑟₁/𝑟₂)², где 𝑟₁ — расстояние от Солнца до Венеры и 𝑟₁ — расстояние от Солнца до Земли, а 𝐸𝑉/𝐸𝑇=2,512𝑚-𝑚, где 𝑚 — звёздная величина Солнца. Поэтому получаем


2,512

𝑚-𝑚

=

2

π



𝑟₁𝑅

𝑟₁Δ


⎞²


π/2

α-π/2

cos(α-ω)

cos

ω

𝑑ω

=


=

π/2

0

ρ(μ,μ₀,φ)

cos³ψ

𝑑ψ

.


(20.3)


Соотношение (20.3) даёт искомую теоретическую зависимость 𝑚 от α, т.е. позволяет построить теоретическую кривую блеска планеты. В соотношение (20.3) надо подставить выражение для ρ(μ,μ₀,φ) и воспользоваться формулами (20.1). Так как коэффициент яркости ρ(μ,μ₀,φ) зависит от величин 𝑥(γ) и λ, то, сравнивая между собой теоретическую и наблюдённую кривые блеска, можно определить указанные величины. При этом следует также принять во внимание соотношение


1

2


π

0

𝑥(γ)

sin

γ

𝑑γ

=

1,


(20.4)


выражающее собой условие нормировки индикатрисы рассеяния.

При определении теоретической кривой блеска удобно в выражении для ρ(μ,μ₀,φ) выделить член, учитывающий рассеяние первого порядка. В таком случае имеем


ρ(μ,μ₀,φ)

=

λ

4


𝑥(γ)

μ+μ₀

+

Δ

ρ(μ,μ₀,φ)

,


(20.5)


где γ=π-α и Δρ — член, учитывающий рассеяния высших порядков. Так как точное выражение для величины Δρ при произвольной индикатрисе рассеяния очень сложное, то мы определим эту величину приближённо, сохраняя в разложении индикатрисы рассеяния по полиномам Лежандра только два первых члена. Иными словами, величину Δρ найдём не для действительной индикатрисы рассеяния 𝑥(γ), а для индикатрисы рассеяния


𝑥(γ)

=

1

+

𝑥₁

cos

γ

,


(20.6)


где


𝑥₁

=

3

2


π

0

𝑥(γ)

cos

γ

sin

γ

𝑑γ

.


(20.7)


Как было показано ранее, коэффициент яркости ρ(μ,μ₀,φ) при индикатрисе рассеяния вида (20.6) даётся формулами (19.18) — (19.20). Пользуясь ими, находим


Δ

ρ

=

λ

4


φ₀⁰(μ)φ₀⁰(μ₀)-𝑥₁φ₁⁰(μ)φ₁⁰(μ₀)-1

μ+μ₀

+


+

λ𝑥₁

4


φ₁¹(μ)φ₁¹(μ₀)cos φ+cos α

μ+μ₀

,


(20.8)


где вспомогательные функции φ₀⁰(μ), φ₁⁰(μ) и φ₁¹(μ) определяются уравнениями (19.21) — (19.23). Как уже говорилось, эти функции табулированы. Заметим также, что при малой роли истинного поглощения в атмосфере (т.е. при значениях λ, близких к 1), из уравнений (19.21) и (19.22) могут быть получены следующие асимптотические формулы:


φ₀⁰(μ)

=

φ(μ)

1-3


1-λ

3-𝑥₁


⎫½

μ

,


(20.9)


φ₁⁰(μ)

=

φ(μ)

μ


3(1-λ)

3-𝑥₁


⎫½

,


(20.10)


где φ(μ) — функция, определяемая уравнением (19.16) при λ=1. Формулами (20.9) и (20.10) можно воспользоваться в случае Венеры, так как альбедо этой планеты весьма велико (порядка 0,7), а следовательно, величина 1-λ очень мала. При сферической индикатрисе рассеяния это видно из формулы (19.78), а при вытянутой вперёд индикатрисе рассеяния величина 1-λ будет ещё меньше.

Подставим теперь выражение (20.5) в соотношение (20.3). Результат этой подстановки можно записать в виде


𝑥(π-α)

ƒ(α)

+

𝑔(α)

=

ℎ(α)

,


(20.11)


где введены обозначения


ƒ(α)

=

1

4


π/2

α-π/2


cos ω cos(α-ω)

cos ω+cos(α-ω)

𝑑ω

×


×

π/2

0

cos²ψ

𝑑ψ

=


=

π

16


1-

sin

α

2

tg

α

2

ln ctg

α

4


,


(20.12)


𝑔(α)

=

π/2

α-π/2

cos

ω

cos(α-ω)

𝑑ω

×


×

π/2

0

Δ

ρ

cos³ψ

𝑑ψ

,


(20.13)


ℎ(α)

=

π

2



𝑟₁𝑅

𝑟₁Δ


⎞²

2,512

𝑚-𝑚

.


(20.14)


Перейти на страницу:

Похожие книги

Занимательно об астрономии
Занимательно об астрономии

Попробуйте найти сегодня что-нибудь более захватывающее дух, чем астрономические открытия. Следуют они друг за другом, и одно сенсационнее другого.Астрономия стала актуальной. А всего двадцать лет назад в школе она считалась необязательным предметом.Зато триста лет назад вы рисковали, не зная астрономии, просто не понять сути даже обычного светского разговора. Так он был насыщен не только терминологией, но и интересами древней науки.А еще два века назад увлечение звездами могло окончиться для вас… костром.Эта книга — об астрономии и немного об астронавтике, о хороших астрономах и некоторых астрономических приборах и методах. Словом, о небольшой области гигантской страны, в основе названия которой лежит древнее греческое слово «astron» — звезда.

Анатолий Николаевич Томилин

Астрономия и Космос / Физика / Образование и наука
Мир в ореховой скорлупке
Мир в ореховой скорлупке

Один из самых блестящих ученых нашего времени, известный не только смелостью идей, но также ясностью и остроумием их выражения, Хокинг увлекает нас к переднему краю исследований, где правда кажется причудливее вымысла, чтобы объяснить простыми словами принципы, которые управляют Вселенной.Великолепные цветные иллюстрации служат нам вехами в этом странствии по Стране чудес, где частицы, мембраны и струны движутся в одиннадцати измерениях, где черные дыры испаряются, и где космическое семя, из которого выросла наша Вселенная, было крохотным орешком.Книга-журнал состоит из иллюстраций (215), со вставками текста. Поэтому размер ее больше стандартной fb2 книги. Иллюстрации вычищены и подготовлены для устройств с экранами от 6" (800x600) и более, для чтения рекомендуется CoolReader.Просьба НЕ пересжимать иллюстрации, т. к. они уже сжаты по максимуму (где-то Png с 15 цветами и более, где то jpg с прогрессивной палитрой с q. от 50–90). Делать размер иллюстраций меньше не имеет смысла — текст на илл. будет не читаемый, во вторых — именно по этой причине книга переделана с нуля, — в библиотеке была только версия с мелкими илл. плохого качества. Макс. размер картинок: 760(высота) x 570(ширина). Книга распознавалась с ~300mb pdf, часть картинок были заменены на идент. с сети (качество лучше), часть объединены т. к. иногда одна илл. — на двух страницах бум. книги. Также исправлена последовательность илл. в тексте — в рус. оригинале они шли на 2 стр. раньше, здесь илл. идет сразу после ссылки в тексте. Psychedelic

Стивен Уильям Хокинг

Астрономия и Космос