Читаем Квантовая магия полностью

Таким образом, любые системы в окружающей реальности можно рассматривать в терминах кубитов, как совокупность ячеек памяти квантового компьютера. Тогда и весь Универсум представляется в виде глобального и единого для всей реальности Квантового Компьютера с большой буквы, своеобразной всеобъемлющей Матрицей (он описывается матрицей плотности). Поэтому Р. Фейнман и говорил об исключительно важной роли квантовых компьютеров в постижении законов природы (о чем упоминалось в самом начале книги). Понимание фундаментальных принципов работы квантового компьютера, в отличие от обычного, уже не ограничивается одним только «железом», конкретными техническими устройствами. Это и будет означать более глубокое понимание фундаментальных законов окружающей реальности, согласно которым «функционирует» весь наш Универсум.

Если продолжить сравнение с обычным компьютером, то наше представление о привычном материальном мире — все что знакомство с одной программой, запущенной на Компьютере, и некоторая способность ориентироваться в ее пределах. При этом мы могли видеть лишь один результат его работы — в виде классической реальности, и изучали законы, которые справедливы в рамках лишь одной этой программы. Но теперь мы начинаем понимать Законы, по которым работают любые программы, принцип действия самого Компьютера и его операционной системы. Это законы, по которым Матрица транслирует нам то или иное восприятие. Мы выходим за рамки привычной локальной программы и замечаем множество других программ (уровней реальности), которые загружены в оперативную память вместе нашей. Мы начинаем понимать взаимосвязь всех этих различных и можем более надежно прогнозировать результат перехода с одного на другой — например, то, в какую реальность попадем после смерти физического тела.

Имея дело с классической информацией, мы разделяем саму информацию и физический носитель. В результате чего можем лишь приспособить какой-либо материальный объект для хранения (передачи) определенного количества «классической» информации. Получается, что без материального носителя информация не может существовать. Поэтому и возникают иногда вопросы, где содержится квантовая информация, и что является ее носителем? В квантовой теории с этим как раз все просто и ясно: поскольку информация здесь — это физическая величина, характеризующая систему, то сама система и является носителем квантовой информации. Это все что спросить: а где содержится масса физического тела? Да в нем самом эта масса и содержится, поскольку является одной из количественных характеристик данного тела.

Не стоит забывать, что квантовое описание на сегодняшний день — это самое полное теоретическое описание из всех известных. И в случае чистого состояния, когда мы описываем замкнутую систему, то на вопрос, где содержится информация об этой системе, следует очевидный ответ: информация содержится в самой системе, это одна из ее количественных характеристик.

Информации в квантовой теории отводится особая роль. Как мы знаем, системы при квантовом подходе могут находиться в нелокальном состоянии, когда сам объект является попросту нематериальным, в нем нет вещества, нет никаких физических полей, его невозможно описать с помощью количественных величин, используемых классической физикой. А вот в терминах количества информации, содержащейся в такой нелокальной системе, описать можно!

Мера информации в квантовой теории определяется на основе понятия матрицы плотности. Узнать во всех подробностях, как это делается, можно из статьи , опубликованной в журнале Reviews of Modern Physics в 1957 году.

Эта статья довольно известна. Например, А. в своем двухтомнике по квантовой механике, когда пишет о матрице плотности [90], указывает в качестве основного источника именно эту статью , правда, речь у него идет не об информации, а лишь о матрицах плотности.

Не уверен, что мера информации была введена именно в этой работе , но ссылок на более ранние статьи я там не увидел. Раздел 8 данной статьи так и называется — «Мера информации», и изначально эта мера вводится очень просто: количество информации Iв системе численно равна следу квадрата матрицы плотности, то есть


I= 2). (3.7)


Это определение легко объясняется с физической точки зрения. Согласно обычным правилам квантовой механики, любой физической величине, которую мы хотим использовать в качестве количественной характеристики системы, ставится в соответствие линейный самосопряженный оператор Q. И численное значение этой физической величины получается из выражения:


< Q> = (  Q). (3.8)


Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже