Чистые состояния, описываемые одним вектором состояния, соответствуют точкам поверхности сферы Блоха, а смешанные состояния, описываемые матрицей плотности, — точкам внутри шара. При взаимодействии с окружением (при декогеренции), в случае смешанного состояния, вектор состояния как бы
будет описывать уже не окружность, а, например эллипс, что-то похожее на форму яйца. А в самом предельном случае, когда состояние кубита становится максимально смешанным, весь шар, все пространство допустимых состояний, сжимается до отрезка на оси квантования между значениями 1/2 и —1/2. Этот отрезок — тот минимум, который может остаться от кубита, скажем, в самом худшем (или лучшем?) случае.Такая ситуация, например, имеет место при максимально запутанном состоянии
другим . Тогда, как уже говорилось выше [см. выражение (3.5)], матрица плотности одного кубита является максимально смешанной.В этом проявляется двойственный характер декогеренции: с одной стороны, она приводит к локализации системы, нарушению когерентного состояния, но с другой — взаимодействие с окружением ведет к квантовой запутанности с этим окружением. Можно еще сказать и так: предельно
декогеренция окружением совпадает с максимальной запутанностью с этим окружением. И реализуется эта ситуация при наличии максимально возможного взаимодействия между кубитами (как в нашем случае), когда они составляют единое целое (максимально запутанное состояние).Можно задать вопрос: а какое количество информации содержит один
? Если с каждой точкой на сфере Блоха, с каждым положением вектора состояния сопоставить определенную информацию, то, как это ни парадоксально звучит, содержит бесконечный объем информации, и эта информация аналоговая, непрерывная. , , непрерывно изменяет свое состояние, изменяя при этом информацию. Но информация, содержащаяся в , — квантоваяСчитать» с кубита можно только один бит классической информации — либо 0, либо 1.Одно из хорошо известных достоин
антовой теории заключается в том, что она может одновременно, в едином ключе, описывать как дискретные, так и непрерывные характеристики системы. Так же и в случае кубита. Имея два основных состояния, мы можем описать бесконечное число «оттенков» между этими двумя пограничными состояниями.Управлять состоянием кубита — значит, управлять амплитудами
При этом привычные для нас классические состояния кубита составляют бесконечно малую часть его совокупного пространства состояний. В терминах коэффициентов
То же самое можно сказать и о любых объектах окружающей реальности. Их допустимое пространство состояний гораздо шире классических состояний. Классический домен составляет лишь незначительную (бесконечно малую) часть совокупной квантовой реальности окружающего мира.
В частных случаях, как я уже отмечал, состояниями кубитов можно управлять и целенаправленно получать любые состояния. Именно практическая работа над созданием квантовых компьютеров многое дала для понимания соотношений между различными состояниями и привела к реализации таких переходов. Например, ученые научились переводить кубиты из классического локального состояния в нелокальную суперпозицию (преобразование Адамара):
Можно назвать этот процесс
. Обратное преобразование (справа налево) — это декогеренция. И все эти «вращения» вектора состояния кубита по сфере Блоха можно делать при помощи унитарных преобразований, обратимых на временах, меньших времени декогеренции кубита внешним окружением.Еще раз подчеркну, нелокальные суперпозиционные состояния и квантовую запутанность научились создавать для
кубитов. Такие «сверхъестественные» состояния уже невозможно объяснить ансамблевой интерпретацией, как это делал Эйнштейн, пытаясь уйти от «телепатии». Теперь эта «телепатия» между кубитами выходит на первый план и становится основным рабочим ресурсом в квантовой информатике.3.6.
/Ян