От предельного случая вернёмся теперь к случаю, когда ширина щели и квантовомеханическое уширение сравнимы по их величине, а времена и расстояния не слишком велики. Мы уже видели, что гауссова щель приводит к гауссову распределению. Если использовать более реальную щель с резкими краями и вычислить возникающие интегралы Френеля, то распределение вероятности спустя время после прохождения щели подобно кривым, изображённым на фиг. 3.6.
Фиг. 3.6. Распределение электронов после прохождения щелей с резкими краями и различной шириной.
В каждом случае вертикальной пунктирной линией показана предсказываемая
классической теорией ширина распределения
b1=b(1+/T).
Для отношения классической ширины распределения к квантовомеханическому уширению
x1
выбраны три различных значения:
b1/x1 = 15 — кривая
Это распределение выражается формулой
P(x)dx=
m
2h(+T)
1/2 [C(u
1
)-C(u
2
)]^2+
+ 1/2 [S(u
1
)-S(u
2
)]^2
dx,
(3.40)
где
u
1
=
x-v0-b(1+/T)
(h/m)(1+/T)
, u
2
=
x-v0+b(1+/T)
(h/m)(1+/T)
(3.41)
а C(u) и S(u) — действительная и мнимая части интегралов Френеля. Первый множитель в этом распределении в точности совпадает с распределением вероятности для свободной частицы, задаваемым выражением (2.6). Остальная часть содержит некоторую комбинацию действительной и мнимой частей интегралов Френеля 1). Именно эта часть ответственна за многообразие кривых, изображённых на фиг. 3.6.
1) См. [3], стр. 125.—
Таким образом, результаты для обеих щелей в общих чертах одинаковы. С наибольшей вероятностью частица находится внутри классической проекции щели. Всё, что вне её — результат квантовомеханического уширения.
Движение частицы сквозь щель рассматривалось нами так, как если бы оно состояло из двух отдельных движений: сначала частица движется к щели, а затем от щели до точки наблюдения. В области щели движение как бы расчленяется. Может возникнуть вопрос, как при таком «разделяющемся на части» движении частица «помнит» свою скорость и в основном сохраняет направление движения, предписываемое классической физикой? Или, другими словами, каким образом уменьшение ширины щели вызывает «потерю памяти», до тех пор пока в пределе все скорости частицы не станут равновероятными?
Чтобы понять это, исследуем амплитуду, описывающую движение к щели. Она в точности равна амплитуде вероятности для свободной частицы, определяемой выражением (3.3), где xa=ta=0, xb=x0+y и tb=T. При смещении поперёк щели (меняется y) обе части амплитуды, действительная и мнимая, изменяются синусоидально. Как мы уже видели, длина волны этих синусоидальных колебаний тесно связана с импульсом [см. формулу (3.10)]. Последующее движение частицы является, как и в оптике, результатом интерференции этих волн. Эта интерференция конструктивна (т.е. усиливает волны) в основном направлении, предписываемом классической механикой, и, вообще говоря, деструктивна (т.е. гасит их) в других направлениях.
Если на ширине щели укладывается большое число волн, т.е. щель очень широкая, то в результате интерференции возникает довольно острый пик и движение становится почти классическим. Предположим, однако, что щель сделана чрезвычайно узкой и на её ширине не укладывается даже одна волна. Тогда не будет никаких осцилляций, которые приводили бы к интерференции, и информация о скорости частицы теряется. Поэтому в пределе, когда ширина щели стремится к нулю, все скорости частицы становятся равновероятными.
§ 4. Волновая функция
Мы уже построили амплитуду вероятности того, что частица достигнет некоторой определённой точки пространства и времени, тщательно прослеживая её движение, в результате которого она попадает в эту точку. Однако часто бывает полезно рассматривать амплитуду перехода в точку пространства без всякого обсуждения предшествующего движения. Поэтому будем обозначать через (x,t) полную амплитуду вероятности перехода в точку (x,t) из некоторого (возможно, неопределённого) прошлого. Такая амплитуда обладает теми же самыми вероятностными свойствами, что и изученные уже нами амплитуды, т.е. вероятность найти частицу в точке x в момент времени t равна |(x,t)|^2 . Эту разновидность амплитуды будем называть волновой функцией. Различие между этой амплитудой и изученными ранее заключается лишь в способе обозначения. Каждому часто приходится слышать: система находится в «состоянии» . Это лишь выражение другими словами того, что система описывается волновой функцией .