Читаем Квантовая механика и интегралы по траекториям полностью

Мысленный эксперимент. Физическая интерпретация квантовой механики и её связь с классической станут более понятными, если мы рассмотрим другой, немного более сложный пример. Предположим, что в момент времени t0 частица выходит из начала координат, а спустя время T мы находим её в некоторой точке x0. В классической механике мы говорили бы, что частица обладает скоростью v0=x0/T. При этом подразумевалось бы, что если частица будет продолжать двигаться дальше, то за время она пройдёт дополнительное расстояние v0. Чтобы проанализировать это с точки зрения квантовой механики, попытаемся решить следующую задачу.

В момент времени t0 частица выходит из начала координат x0. Пусть нам известно, что спустя время T она находится в окрестности x0±b точки x0. Спрашивается, какова вероятность обнаружить частицу ещё через время на расстоянии x от точки x0? Амплитуду перехода в точку x в момент времени t+ можно рассматривать как сумму вкладов от всех траекторий, соединяющих начало координат с конечной точкой, при условии, что в момент времени T соответствующие траектории лежат в интервале x0±b.

Эта амплитуда вычисляется очень быстро, однако стоит сначала разобрать, какого сорта эксперимент мы здесь рассматриваем. Каким образом можно узнать, что данная частица проходит в пределах ±b от точки x0? Можно посмотреть, как обычно, находится ли частица в момент времени T в интервале x0±b. Это был бы наиболее естественный способ, однако вследствие сложного взаимодействия электрона с прибором детальный анализ его является (по сравнению с другими возможностями) несколько затруднительным.

Фиг. 3.3. Движение частицы сквозь щель.

Известно, что частица, выходящая в момент времени t=0 из точки x=0, проходит между точками x0-b и x0+b в момент времени t=T.

Мы хотим вычислить вероятность нахождения частицы в некоторой точке x спустя время , т.е. когда t=T+. Согласно классическим законам, частица должна находиться между x0(/T)+b(1+/T) и x0(/T)-b(1+/T), т.е. внутри ортогональной проекции щели. Однако квантовомеханические законы показывают, что частица может с отличной от нуля вероятностью находиться и вне этих классических пределов.

Эту задачу нельзя решать, применяя лишь закон движения для свободной частицы, так как щель ограничивает движение частицы. Поэтому разобьём задачу на две — соответственно двум последовательным движениям свободной частицы: в первой задаче рассматривается движение частицы из точки x=0 при t=0 в точку x=x0+y при t=T, где |y|=b; во второй — движение из точки x0+y при t=T в точку x при t=T+. Полная амплитуда вероятности, как это видно из формулы (3.19), равна интегралу от произведения ядер для двух таких движений свободной частицы.

Предположим, что в момент времени T нами просматривается, скажем, с помощью яркого света, вся ось x за исключением интервала x0±b. Как только частица обнаружена, мы прерываем опыт. Примем во внимание лишь те случаи, когда полное обследование всей оси, за исключением интервала x0±b, показывает, что нигде нет ни одной частицы, т.е. исключены все траектории, проходящие за пределами интервала x0±b. Схема эксперимента приведена на фиг. 3.3. Амплитуду теперь можно написать в виде

(x)=

b

-b

K(x+x

0

,T+;x

0

+y,T)

K(x

0

+y,T;0,0)dy.

(3.19)

Это выражение записано в соответствии с правилом сложения амплитуд для последовательных во времени событий. Событие первое — частица движется от начала координат до щели. Событие второе — дальнейшее движение частицы от щели до точки x. Щель имеет конечную ширину, и прохождение через каждую её точку связано с различными альтернативными возможностями; поэтому мы должны интегрировать по всей ширине щели. Частицы, которые минуют эту щель, выбывают из эксперимента, и их амплитуды в сумму не войдут. Все частицы, которые проходят через щель, движутся как свободные, и соответствующие им ядра задаются выражением (3.3). Амплитуда вероятности имеет, таким образом, вид

(x)=

b

-b

2ih

m

- 1/2

exp

im(x-y)^2

2h

2ihT

m

- 1/2

x

x

exp

im(x0+y)^2

2hT

dy.

(3.20)

Этот интеграл можно выразить через интегралы Френеля. В таком представлении уже содержатся физические результаты (которые мы обсудим ниже), но они не наглядны из-за математической сложности интегралов Френеля. Чтобы не затемнять математикой физический смысл результатов, мы получим другую, но аналогичную формулу, которая приведёт нас к более простым математическим выражениям.

Гауссова щель. Введём в подынтегральное выражение в качестве вспомогательного множителя функцию G(y). Если положить эту функцию равной единице в интервале -b=y=+b и равной нулю всюду вне его, то пределы интегрирования можно раздвинуть до бесконечности без изменения результата. Тогда

(x)=

-

mG(y)

2ihT

exp

im

2h

(x-y)^2

+

(x0-y)^2

T

dy,

(3.21)

где

G(y)=

1 для -b=y=b,

0 для |y|b.

Допустим теперь, что в качестве G(y) взята функция Гаусса

G(y)=e

-y^2/2b^2

.

(3.22)

Перейти на страницу:

Похожие книги

Скрытая реальность. Параллельные миры и глубинные законы космоса
Скрытая реальность. Параллельные миры и глубинные законы космоса

Брайан Грин - автор мировых бестселлеров "Элегантная Вселенная" и "Ткань космоса" - представляет новую книгу, в которой рассматривается потрясающий вопрос: является ли наша Вселенная единственной?Грин рисует удивительно богатый мир мультивселенных и предлагает читателям проследовать вместе с ним через параллельные вселенные.  С присущей ему элегантностью Грин мастерски обсуждает сложнейший научный материал на живом динамичном языке, без привлечения абстрактного языка формул, показывая читателю красоту науки на передовых рубежах исследования. Эта яркая книга является, безусловно, событием в жанре научно-популярной литературы. "Скрытая реальность" - это умный и захватывающий рассказ о том, насколько невероятной может быть реальность и как нам проникнуть в ее тайны.

Брайан Грин , Брайан Рэндолф Грин

Физика / Научпоп / Образование и наука / Документальное