Читаем Квантовые миры и возникновение пространства-времени полностью

В этой главе мы поговорим о главной загадке многомировой интерпретации: происхождении и природе вероятности. Уравнение Шрёдингера абсолютно детерминистское. Почему вообще в игру вступают вероятности и почему соблюдается правило Борна: вероятности равны амплитудам – комплексным числам, которые волновая функция ассоциирует с каждым возможным результатом, – возведенным в квадрат? Имеет ли вообще смысл говорить о вероятности оказаться в той или иной ветке, если «будущая версия» меня окажется в каждой ветке?

В академических, копенгагенских версиях квантовой механики нет необходимости «выводить» правило Борна для вероятностей. Мы просто припечатываем его как один из постулатов теории. Почему нельзя поступить так же в случае с многомировой интерпретацией?

Дело в том, что, хотя ответ в обоих случаях и звучит одинаково – «вероятности задаются квадратом волновой функции», – смысл этих формулировок сильно различается. В хрестоматийной версии правило Борна – это утверждение о том, как часто происходят события или как часто они будут происходить в будущем. В многомировой интерпретации нет места для такого дополнительного постулата. Мы точно знаем, что произойдет, исходя из того базового правила, что волновая функция всегда подчиняется уравнению Шрёдингера. Вероятность в многомировой интерпретации – это безусловное утверждение о том, во что мы должны верить и как действовать, а не о том, как часто происходят те или иные события. Причем «во что мы должны верить» не относится к постулатам физической теории, а должно из них следовать.

Более того, как мы убедимся, здесь нет ни места для дополнительного постулата, ни необходимости в нем. С учетом базовой структуры квантовой механики правило Борна естественно и работает автоматически. Поскольку в природе прослеживаются соответствующие этому правилу явления, это вселяет уверенность, что мы на верном пути. Структура, в которой важный результат может быть выведен из более фундаментальных постулатов, должна, при прочих равных условиях, быть предпочтительнее той, где подобный результат нужно подразумевать отдельно.

Если нам удастся ответить на этот вопрос, то мы значительно приблизимся к отождествлению мира, который наблюдаем, с миром, каким он был бы в случае правильности многомировой интерпретации. Это мир, хорошо аппроксимируемый классической физикой во всех ситуациях, кроме событий, происходящих в квантовых экспериментах, когда вероятность получить тот или иной результат задается правилом Борна.

⚪ ⚪ ⚪

Проблема вероятностей часто формулируется как попытка выяснить, почему вероятности задаются квадратами амплитуд. Но это не самое сложное. Возведение амплитуд в квадрат для получения вероятностей – операция тривиальная; сложности возникали бы при необходимости возводить волновую функцию в пятую степень и т. п. Мы узнали об этом еще в главе 5, когда на примере кубитов выяснили, что волновую функцию можно трактовать как вектор.

Этот вектор подобен гипотенузе прямоугольного треугольника, а отдельные амплитуды – его катетам. Длина вектора равна единице, и по теореме Пифагора именно такова сумма квадратов амплитуд. Поэтому «амплитуды в квадрате» естественно смотрятся в качестве вероятностей: это положительные числа, сумма которых равна единице.

Более серьезный вопрос: есть ли в эвереттовской квантовой механике что-либо непредсказуемое и если да, то почему существует специфическое правило по присваиванию вероятностей. В многомировой интерпретации, если мы знаем волновую функцию на определенный момент времени, то можем в точности вычислить, что будет в любой другой момент времени, просто решив уравнение Шрёдингера. Здесь нет места случайностям. Как же мир в таком представлении будет согласовываться с нашими реальными наблюдениями, ведь такие явления, как распад атомного ядра или измерение спина, кажутся безоговорочно случайными?

Вернемся к нашему любимому примеру с измерением спина электрона. Допустим, в исходном состоянии у нас есть электрон, находящийся в суперпозиции равных вероятностей верхнего и нижнего спинов по вертикальной оси, и этот электрон мы пропускаем через магнит Штерна – Герлаха. Согласно академической квантовой механике, у нас будет 50 %-ная вероятность, что волновая функция сколлапсирует в верхний спин, и 50 %-ная – что в нижний. С другой стороны, согласно многомировой интерпретации, существует 100 %-ная вероятность, что волновая функция Вселенной разделится из одного мира на два. Действительно, в одном из этих миров наблюдатель увидит верхний спин, а в другом – нижний. Однако оба мира существуют, это неоспоримо. Если бы мы сформулировали вопрос так: «Какова вероятность, что я как наблюдатель окажусь в той ветви волновой функции, где спин будет верхним?», то никакого ответа на него не просматривается. Вы не окажетесь одним из наблюдателей: ваше актуальное единственное «я» с определенностью эволюционирует в обоих этих наблюдателей. Как же нам рассуждать о вероятностях в такой ситуации?

Перейти на страницу:

Все книги серии New Science

Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука
Идеальная теория. Битва за общую теорию относительности
Идеальная теория. Битва за общую теорию относительности

Каждый человек в мире слышал что-то о знаменитой теории относительности, но мало кто понимает ее сущность. А ведь теория Альберта Эйнштейна совершила переворот не только в физике, но и во всей современной науке, полностью изменила наш взгляд на мир! Революционная идея Эйнштейна об объединении времени и пространства вот уже более ста лет остается источником восторгов и разочарований, сюрпризов и гениальных озарений для самых пытливых умов.История пути к пониманию этой всеобъемлющей теории сама по себе необыкновенна, и поэтому ее следует рассказать миру. Британский астрофизик Педро Феррейра решил повторить успех Стивена Хокинга и написал научно-популярную книгу, в которой доходчиво объясняет людям, далеким от сложных материй, что такое теория относительности и почему споры вокруг нее не утихают до сих пор.

Педро Феррейра

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Научпоп / Образование и наука / Документальное
Биоцентризм. Как жизнь создает Вселенную
Биоцентризм. Как жизнь создает Вселенную

Время от времени какая-нибудь простая, но радикальная идея сотрясает основы научного знания. Ошеломляющее открытие того, что мир, оказывается, не плоский, поставило под вопрос, а затем совершенно изменило мироощущение и самоощущение человека. В настоящее время все западное естествознание вновь переживает очередное кардинальное изменение, сталкиваясь с новыми экспериментальными находками квантовой теории. Книга «Биоцентризм. Как жизнь создает Вселенную» довершает эту смену парадигмы, вновь переворачивая мир с ног на голову. Авторы берутся утверждать, что это жизнь создает Вселенную, а не наоборот.Согласно этой теории жизнь – не просто побочный продукт, появившийся в сложном взаимодействии физических законов. Авторы приглашают читателя в, казалось бы, невероятное, но решительно необходимое путешествие через неизвестную Вселенную – нашу собственную. Рассматривая проблемы то с биологической, то с астрономической точки зрения, книга помогает нам выбраться из тех застенков, в которые западная наука совершенно ненамеренно сама себя заточила. «Биоцентризм. Как жизнь создает Вселенную» заставит читателя полностью пересмотреть свои самые важные взгляды о времени, пространстве и даже о смерти. В то же время книга освобождает нас от устаревшего представления, согласно которому жизнь – это всего лишь химические взаимодействия углерода и горстки других элементов. Прочитав эту книгу, вы уже никогда не будете воспринимать реальность как прежде.

Боб Берман , Роберт Ланца

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Биология / Прочая научная литература / Образование и наука

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука
Абсолютный минимум
Абсолютный минимум

Физика — это сложнейшая, комплексная наука, она насколько сложна, настолько и увлекательна. Если отбросить математическую составляющую, физика сразу становится доступной любому человеку, обладающему любопытством и воображением. Мы легко поймём концепцию теории гравитации, обойдясь без сложных математических уравнений. Поэтому всем, кто задумывается о том, что делает ягоды черники синими, а клубники — красными; кто сомневается, что звук распространяется в виде волн; кто интересуется, почему поведение света так отличается от любого другого явления во Вселенной, нужно понять, что всё дело — в квантовой физике. Эта книга представляет (и демистифицирует) для обычных людей волшебный мир квантовой науки, как ни одна другая книга. Она рассказывает о базовых научных понятиях, от световых частиц до состояний материи и причинах негативного влияния парниковых газов, раскрывая каждую тему без использования специфической научной терминологии — примерами из обычной повседневной жизни. Безусловно, книга по квантовой физике не может обойтись без минимального набора формул и уравнений, но это необходимый минимум, понятный большинству читателей. По мнению автора, книга, популяризирующая науку, должна быть доступной, но не опускаться до уровня читателя, а поднимать и развивать его интеллект и общий культурный уровень. Написанная в лучших традициях Стивена Хокинга и Льюиса Томаса, книга популяризирует увлекательные открытия из области квантовой физики и химии, сочетая представления и суждения современных учёных с яркими и наглядными примерами из повседневной жизни.

Майкл Файер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Научпоп / Образование и наука / Документальное