Читаем Личность и Абсолют полностью

Если так, то тогда понятно, почему трансцедентное число, не являясь корнем алгебраического уравнения с целыми коэффициентами, является тем не менее корнем дифференциального уравнения. Ведь последнее, содержа в себе производные, тем самым содержит помимо той простой иррациональности, которая возможна в алгебраической области, еще и другую, особую иррациональность, ту, которую мы получаем в результате дифференцирования, или, вернее, ту, благодаря которой возможен переход от функции к ее инобытию, а затем и к закону инобытийных соотношений между функцией и аргументом, т. е. к производной. Так или иначе, но дифференциальное уравнение обеспечивает двухмерную иррациональность, которой не хватает в алгебраическом уравнении.

d) Но если так, то тогда я спрашиваю себя: а если мне нужна трехмерная или четырехмерная иррациональность, то не значит ли это, что мое трансцедентное число отказывается быть корнем дифференциального уравнения? Другими словами, числа гипертрансцедентное не эквивалентно ли числу гиперкомплексному, подобно тому как вещественная степень трансцедентности эквивалентна спирали, а мнимая ее степень— обыкновенному комплексному, числу (и получаемой таким образом окружности)? Если это так, то тогда в нашем гиперкомплексном числе мы и получим дошедшую до последней диалектической зрелости и выраженности эманацию трансцедентного, которая зарождается в Эйлеровых тригонометрических выражениях мнимых степеней Неперова числа.

e) Поскольку до сих пор не существует исследования гипертрансцедентных чисел и еще нет указания их точных свойств, поставленный вопрос не может найти для себя того или другого ясного ответа. Если этот ответ будет отрицательным, то это будет значить, что наше учение о гиперкомплексах, отражая по своему содержанию давно известные истины математики (линейные алгебры, всеобщая алгебра) и потому едва ли уязвимое в этом отношении, окажется истиной только диалектического ума, еще не нашедшей своего математического соответствия (если иметь в виду связь гиперкомплексов с трансцедентностью).

6. а) Так или иначе, но гиперкомплексное число является с чисто диалектической точки зрения самым зрелым, самым сложным и самым развитым продуктом арифметического мышления. Когда мы говорили о внешнем инобытии числа (положительное, отрицательное, нуль), мы еще могли перейти к внутреннему инобытию (целое, дробное, бесконечное). Когда мы обозрели и внутренние, и внешние инобытийные судьбы числа, мы еще могли доискиваться той области, где то и другое совпадает (рациональное, иррациональное, мнимое). Но когда мы вмес-; тили в число не только просто его внутренно–внешнее инобытие, но! и всякое инобытие, какое только для него возможно, то больше идти уже некуда. Алгебраическое число обобщило все предыдущие типы числа в том смысле, что поставило их лицом к миру с тем безбрежным инобытийно–иррациональным морем, которое их омывает. Оно запретило им бросаться в это море, но оно сделало возможным в него бросаться. Потому оно—только потенция, потенция целости и потенция простой иррациональности. Трансцедентное число уже ринулось в это безбрежное море иррациональности, чтобы его охватить, чтобы его вместить в себя. И вот оно вместило его. Но оно вместило его сразу, целиком, как бы влило в себя, еще не размеривши его и не приведя в полный порядок. Однако тут рождается гиперкомплексное число, которое не только вмещает в себя всю бесконечность инобытийных бездн, но которое превращает ее в стройный, зрительный, фигурно–размеренный космос.

b) Дальше идти некуда. Все типы арифметического числа этим исчерпаны. Тут—последняя зрелость арифметического числа. Поэтому дальнейшее исследование возможно только уже на совершенно новой диалектической ступени, за пределами типов числа вообще. В самом деле, допустим, что число, вместившее в себя бесконечность своих становлений, продолжает вмещать в себя еще дальнейшие свои становления. В этом случае или данное становление вольется в бесконечность уже имеющихся становлений и в ней потонет, — тогда мы останемся при типе числа, который уже нами получен, и никакого нового типа не образуется; или новое становление возымеет совсем новое значение, которое может получиться, если новое становление не просто вместится в данное число, но затронет самую его субстанцию, вовлечет в становление само число настолько, что оно уже перестанет быть самим собою и превратится в новое число. В последнем случае мы, очевидно, покидаем область числа как такового, область тех или иных типов чисел, но переходим к проблемам становления самих чисел или к арифметическим операциям.

Так гибнет тип числа и рождается числовая операция.

§ 114. Дополнительные замечания к учению о типах числа.

1. Нарисованная в предыдущем диалектическая картина числовой типологии претендует, как и вообще диалектика, только на точность взаимосвязи категорий при определенной заданной точке зрения. При всжой другой точке зрения взаимосвязь будет иная. Нашу взаимосвязь числовых типов можно [обозреть] при помощи следующей схемы.

Перейти на страницу:

Похожие книги

Иисус Неизвестный
Иисус Неизвестный

Дмитрий Мережковский вошел в литературу как поэт и переводчик, пробовал себя как критик и драматург, огромную популярность снискали его трилогия «Христос и Антихрист», исследования «Лев Толстой и Достоевский» и «Гоголь и черт» (1906). Но всю жизнь он находился в поисках той окончательной формы, в которую можно было бы облечь собственные философские идеи. Мережковский был убежден, что Евангелие не было правильно прочитано и Иисус не был понят, что за Ветхим и Новым Заветом человечество ждет Третий Завет, Царство Духа. Он искал в мировой и русской истории, творчестве русских писателей подтверждение тому, что это новое Царство грядет, что будущее подает нынешнему свои знаки о будущем Конце и преображении. И если взглянуть на творческий путь писателя, видно, что он весь устремлен к книге «Иисус Неизвестный», должен был ею завершиться, стать той вершиной, к которой он шел долго и упорно.

Дмитрий Сергеевич Мережковский

Философия / Религия, религиозная литература / Религия / Эзотерика / Образование и наука