Другим следствием теории явился полученный Больцманом вывод о том, что в вертикальном столбе газа температура не изменяется с высотой. Этот результат вызвал возражения со стороны учителя и друга Больцмана Й. Лошмидта, который увидел в этом дополнительный аргумент в пользу «тепловой смерти» Вселенной. Рассуждения Лошмидта были довольно просты — если температура в вертикальном столбе не изменяется, то в масштабе Вселенной это и будет означать признание ее «тепловой смерти». Не признавая этой теории, Лошмидт утверждал, что температура в столбе не может быть постоянной, а второе начало термодинамики во Вселенной должно нарушаться. В результате острой, но дружеской дискуссии, направленной на глубокий анализ основ теории, Больцман доказал ошибочность утверждений своего оппонента.
Однако до полного признания распределения Максвелла, теперь уже распределения Максвелла — Больцмана, было еще далеко. Напомним, что вывод Максвелла был далеко не строгим. В таких случаях всегда возникают вопросы: «Единственно ли найденное распределение?» или «Не будет ли получен в результате более строгого вывода иной результат?» Конечно, можно было бы попытаться проверить найденное соотношение в эксперименте, но техника того времени еще не позволяла надеяться на подобную проверку.
Первую попытку доказательства единственности распределения выполнил сам Максвелл. Интересен ход его рассуждений. Если газ находится в состоянии термодинамического равновесия, то в нем установилось не меняющееся со временем — стационарное — распределение частиц по скоростям. Если
Эти рассуждения не кажутся Больцману убедительными. В работе «Дальнейшее изучение теплового равновесия молекул газа» (1872) он приводит ряд возражений против доказательства Максвелла и дает строгий вывод распределения. Больцман видит принципиальные погрешности доказательства Максвелла в рассмотрении изменения скорости отдельной частицы, в то время как в процессе столкновений участвуют и одновременно изменяют свои скорости как минимум две молекулы. Стационарное распределение молекул по скоростям, отмечает Больцман, возникает и поддерживается именно в результате таких парных столкновений. Если же соударений нет, то однажды заданное распределение будет сохраняться сколь угодно долго, а значит, допускается возможность любого произвольного распределения. Больцман также не согласен с утверждением Максвелла о том, что ряд скоростей
Больцман дает строгий и изящный вывод закона распределения. Он рассматривает не переходы между скоростями одной частицы
В статьях 1872 и 1875 гг. Больцман еще более расширяет области применения полученного распределения, применяя его к многокомпонентным газам. Распределение Максвелла — Больцмана получает, таким образом, в этом цикле работ прочное теоретическое обоснование. Только сравнение с экспериментальными данными могло теперь заставить усомниться в справедливости формул. И все же строгий вывод закона распределения оставлял нерешенной проблему доказательства его единственности. Больцман решил и эту проблему, но на принципиально ином пути.
7. Новые идеи