Читаем Логике научного исследования полностью

использовании числа параметров для определения понятия простоты*2. Несомненно также, что наше

различение материальной и формальной редукций размерности теории (см. раздел 40) может подска-

зать ответ на некоторые возможные возражения против теории Вейля, например на возражение, со-


32

гласно которому множество эллипсов, для которых даны соотношения их осей и численный эксцен-

триситет, имеет в точности столько же параметров, как и множество окружностей, хотя второе мно-

жество, очевидно, является более «простым».

Самое же важное состоит в том, что наша теория объясняет, почему простота ценится столь вы-

соко.Чтобы понять это, нам не нужно принимать ни «принцип экономии мышления», ни какой-либо

другой принцип такого же рода. Когда нашей целью является знание, простые высказывания следует

ценить выше менее простых потому, что они сообщают нам больше, потому, что больше их эмпи-

рическое содержание и потому, что они лучше проверяемы.

44. Геометрический образ и функциональная форма

Наша концепция простоты помогает нам разрешить ряд противоречий, которые до сих пор стави-

ли под сомнение полезность применения понятия простоты.

Немногие, я думаю, считают геометрический образ,скажем логарифмической кривой, очень про-

стым. Однако закон,который может быть представлен с помощью логарифмической функции, обыч-

но считается простым. Аналогичным образом функция синуса,по общему мнению, является простой, хотя геометрический образ синусоиды,возможно, не является столь простым.

Трудности такого рода можно устранить, если мы вспомним о связи между числом параметров и

степенью фальсифицируемости и проведем

*2Как упоминалось в примечании 7 к разделу 42 и в примечании *1 к этому разделу, именно Ха-

ролд Джеффрис и Дороти Ринч впервые предложили измерять простоту некоторой функции мало-

численностью ее свободно заменимых параметров. Однако они вместе с тем предлагали приписывать

более простой гипотезе большую априорную вероятность. Таким образом, их взгляды могут быть

выражены следующей схемой:

простота = малочисленность параметров= высокая априорная вероятность.

Получилось так, что я исследовал эту проблему совсем с другой стороны. Меня интересовала оценка степеней проверя-

емости, и я вначале обнаружил, что проверяемость можно измерить при помощи «логической невероятности» (которая в

точности соответствует используемому Джеффрисом понятию «априорной» невероятности). Затем я обнаружил, что прове-

ряемость и, следовательно, априорная невероятность могут быть отождествлены с малочисленностью параметров, и только

в конечном итоге я отождествил высокую степень проверяемости с высокой степенью простоты. Таким образом, мои взгля-

ды могут быть выражены такой схемой:

проверяемость=высокая априорная невероятность= малочисленность параметров = простота.

Заметим, что две эти схемы частично совпадают. Однако в решающем пункте, когда речь заходит о вероятности и неве-

роятности, они находятся в прямом противоречии друг с другом. См. также Приложение *VIII.

132

различение между формальной и материальной редукциями размерности. (Здесь могут помочь и соображения о роли

инвариантности по отношению к преобразованиям систем координат.) Когда речь идет о геометрической форме или

об образенекоторой кривой, мы требуем от нее инвариантности по отношению ко всем преобразова-

ниям, принадлежащим к группе переносов. Мы можем также потребовать при этом инвариантности

по отношению к преобразованиям подобия, так как обычно предполагается, что геометрическая фор-

ма или геометрический образ не связаны с определенным местомна плоскости. Следовательно, если

мы рассматриваем форму однопараметрической логарифмической кривой у= logax,не связывая ее с

определенным местом на плоскости, то такая кривая будет зависеть от пятипараметров (если допу-

стить преобразования подобия). Таким образом, она ни в коем случае не является весьма простой

кривой. Если же некоторая логарифмическая кривая представляет теорию или закон,то указанные

преобразования координат не имеют значения. В таких случаях использование вращений, параллель-

ных переносов и преобразований подобия не имеет смысла, так как логарифмическая кривая здесь, как правило, является графическим представлением, в котором оси координат не взаимозаменяемы (к

примеру, ось хможет представлять атмосферное давление, а ось у— высоту над уровнем моря). По

этой же причине преобразования подобия также не играют здесь никакой роли. Аналогичные сооб-

ражения применимы и к колебаниям синусоидывокруг некоторой конкретной оси, к примеру вокруг

оси времени, и ко многим другим случаям.

Перейти на страницу:

Похожие книги

Адепт Бурдье на Кавказе: Эскизы к биографии в миросистемной перспективе
Адепт Бурдье на Кавказе: Эскизы к биографии в миросистемной перспективе

«Тысячелетие спустя после арабского географа X в. Аль-Масуци, обескураженно назвавшего Кавказ "Горой языков" эксперты самого различного профиля все еще пытаются сосчитать и понять экзотическое разнообразие региона. В отличие от них, Дерлугьян — сам уроженец региона, работающий ныне в Америке, — преодолевает экзотизацию и последовательно вписывает Кавказ в мировой контекст. Аналитически точно используя взятые у Бурдье довольно широкие категории социального капитала и субпролетариата, он показывает, как именно взрывался демографический коктейль местной оппозиционной интеллигенции и необразованной активной молодежи, оставшейся вне системы, как рушилась власть советского Левиафана».

Георгий Дерлугьян

Культурология / История / Политика / Философия / Образование и наука