Читаем Магия чисел. Математическая мысль от Пифагора до наших дней полностью

Судьба Беркли напоминает судьбу Роджера Бэкона. Живи Беркли в другие времена, не в «век разума», он, по всей видимости, сумел бы добиться успеха как первопроходец в чистой математике. Его мастерство в математической технике было слишком поверхностным для созидательной работы в модных течениях математической мысли. А в своей критике математики как таковой он обгонял свое время. Его основополагающая ересь касательно вечной необходимости геометрии была повторена и усилена в трех главных дискуссиях по поводу значения математической истины, которые возникли в конце XIX века и были продолжены со все возрастающим накалом и беспорядком в XX веке. Его прочтение алгебры как простого набора формальных правил было продолжено в 1830-х годах только затем, чтобы улетучиться из памяти еще на несколько десятилетий. Его отрицание математических абстракций реальности Платона совпадало по направленности с современным логическим позитивизмом. И наконец, его критика уравнений Ньютона стала компромиссом между Зеноном и современными критическими работами по основам математического анализа. Но ничто из этого не помогло убежденным теологам в решении его проблемы по доказательству существования Бога.

Поскольку математика предала его, Беркли искал другие средства подтверждения постулата существования. Прежде всего он убедил себя, что опроверг существование самой проблемы. Из этого, как ему казалось, следовало, что все есть дух. Приняв данный постулат, доказать остальное становилось относительно легко. И хотя это не было математически доказано, ведь сам Беркли считал, что это невозможно, он следовал строгим методам математики. Аргументы в пользу необходимости и достаточности каждого шага выглядели вполне профессионально и логически строго.

В эссе «К новой теории восприятия» (1709), например, Беркли предпринял попытку доказать, что «видимое пространство» – понятие идеалистическое, существующее исключительно в мозгу воспринимающего человека. Делая великодушную уступку Пифагору, Беркли присвоил числу статус реальности. «Трактат о принципах человеческого знания» (1710) выдвинул дальнейшую аргументацию в пользу чистого идеализма, отрицал существование материи и доказывал, что разум есть единственно возможная «субстанция». Все это так же убедительно, как и книга Евклида: сам выдал гипотезу и сделал логические выводы, нравится вам или нет. Результатом стало знаменитое берклианское «Всё», изречение «Быть – значит быть воспринимаемым» (Esse est percipi).

Если бы Беркли был куда более посредственным математиком и куда более хорошим епископом, он, возможно, принял бы на веру половину теорем, которые доказывал. Например, вместо того, чтобы исписывать тома евклидовыми математическими умозаключениями, чтобы доказать следующее великое предположение, которое можно было просто принять на веру: «Существует вездесущий Вечный разум, который знает и воспринимает все и демонстрирует нашему взору таким способом и согласно таким правилам, которые Он сам предопределил и которые именуются нами законами природы».

Интересно сравнить веру в науку Беркли XVIII века с декларацией антинаучной независимости Эддингтона в XX веке: «…все законы природы, традиционно именуемые фундаментальными, могут быть предугаданы полностью в результате эпистемологических рассуждений». К столь противоречивым выводам может, не слишком напрягаясь, привести философский дух математики, обитающий в разных умах с разницей в два века. Тезис одной эпохи совпадает с антитезисом другой в синтезе Гегеля, и в качестве результата появляется куда более комплексное и, главное, широкое знание.

<p>Глава 25</p><p>Верующий и неверующий</p>

Джироламо Саккери (1667–1733) произвел не больше впечатления, чем Беркли, на упрямцев с «волей к вере» (как сказано в классической фразе Уильяма Джеймса) в XVIII веке. Этот расчетливый век прозвали «веком разума», что весьма иронично, если вспомнить, как «Аналитик» Беркли был принят этими же разумниками. Попытка Саккери перетряхнуть догматизм того времени окончилась провалом отчасти из-за его темперамента, отчасти из-за условий строжайшей дисциплины, в которых ему приходилось работать.

Если величайший тест на веру потребовался бы от Саккери, ему следовало доказать то, во что он сам не верил. И вовсе не потому, что он будто был скептиком или циником, поскольку ни тем ни другим он не был. Он просто обладал природным даром верить во что он хотел. И пусть это наипростейшее объяснение его извилистой карьеры, но оно не единственно возможное, другие объяснения напросятся сами, когда мы проследим кружные пути его злосчастного шедевра.

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Для юных математиков
Для юных математиков

Вниманию юного, и не очень, читателя предлагается книжная серия, составленная из некогда широко известных произведений талантливого отечественного популяризатора науки Якова Исидоровича Перельмана.Начинающая серию книга, которую Вы сейчас держите в руках, написана автором в 20-х годах прошлого столетия. Сразу ставшая чрезвычайно популярной, она с тех пор практически не издавалась и ныне является очень редкой. Книга посвящена вопросам математики. Здесь собраны разнообразные математические головоломки, из которых многие облечены в форму маленьких рассказов. Книга эта, как сказал Я. И. Перельман, «предназначается не для тех, кто знает все общеизвестное, а для тех, кому это еще должно стать известным».Все книги серии написаны в форме непринужденной беседы, включающей в себя оригинальные расчеты, удачные сопоставления с целью побудить к научному творчеству, иллюстрируемые пестрым рядом головоломок, замысловатых вопросов, занимательных историй, забавных задач, парадоксов и неожиданных параллелей.Авторская стилистика письма сохранена без изменений; приведенные в книге статистические данные соответствуют 20-м годам двадцатого века.

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Математика / Книги Для Детей / Дом и досуг