Еще более достоверный эквивалент пятому постулату Евклида, чем предшествующий, был замечен Саккери. Это одно из трех взаимоисключающих предположений, исчерпывающих возможности для параллельных линий. Вместо эквивалента Саккери, увидеть суть вопроса можно в еще более упрощенном и более достоверном эквиваленте постулата Евклида, а следовательно, и Саккери.
Точка р и прямая линия l, не проходящая через точку р, задают одну плоскость в пространстве. Представим пучок всех (прямых) линий, лежащих на данной плоскости и проходящих через точку р. Существует три варианта: только одна линия из всего пучка не пересечет l, более чем одна линия из пучка пересечет l, ни одна линия не пересечет l.
Первый из этих трех вариантов эквивалентен пятому постулату Евклида. Он также эквивалентен предположению, которое Саккери обязался вывести из другого предположения Евклида. Ему пришлось убедить себя, что второй и третий варианты (и даже их относительные эквиваленты) приводят к противоречию. По очереди из каждого он выводил цепочку рассуждений. Пока он верил своим дедуктивным рассуждениям и придерживался желания поверить в зависимость, он не мог достичь желанного противоречия в неевклидовых эквивалентах. Его строгая логика ничего не выводила, кроме непротиворечивости. Этого не могло быть.
Либо обдуманно, либо по объяснимому недосмотру разочарованный фанат Евклида опроверг одну из своих новых геометрий, добавив дополнительный постулат, пренебрегая его формулировкой: ложно, что прямая линия, достаточно длинная, возвращается в себя саму и становится конечной величиной. Второй вариант он отрицал успешнее, ложным использованием бесконечно малых величин. Игнорируя правила игры, в которую он подвязался играть честно, он сдался, хотя должен был выиграть. Приз был уже у него в руках, когда он отступил. Но поскольку он, безусловно, подсознательно настраивался на победу во имя Евклида еще до начала игры, возможно, он не смог изменить себе. Одна из двух неевклидовых геометрий, которую он выпустил из рук, видимо, сильно искушала его. Он отверг ее с явным сожалением. Ту самую, которую человек по фамилии Лобачевский откроет через девяносто семь лет.
В безмятежной уверенности, что именно он установил неизбежность и вечную истинность геометрии Евклида на все времена, Саккери назвал свой труд «Евклид, очищенный ото всех пятен». Практически со времен Евклида гениальные геометры старались вывести пятый постулат Евклида из его собственных предположений, и все потерпели фиаско. Теперь известно, что поражение было неизбежно: пятый постулат не связан с остальными, как непроизвольно показал Саккери и намеренно – Лобачевский в процессе создания неевклидовых геометрий. Но Саккери умер счастливым в собственном неверии в настоящее величие своего труда.
Если интеллектуальная жизнь Саккери была трагедией, то, по крайней мере, не жалкой. По утверждению отдельных антиклерикальных авторов, жалкая участь постигла шедевры Саккери. Труд этот не потеряли, не предали забвению более чем на полтора века. Его конфисковали и спрятали. Это неприятная инсинуация. И цель дискуссии о нем состоит только в том, чтобы повысить историческую значимость для всех «истин» – от математики до теологии – появления неевклидовой геометрии в XVIII и XIX веках.
Мы видели, что во времена Ренессанса геометрия Евклида вошла в состав вечных ценностей. Кто бы мог оказаться настолько нетерпеливым, чтобы поставить под сомнение абсолютную необходимость этой конкретной геометрии, того неминуемо причислили бы к числу еретиков или, менее почетно, к сумасшедшим. Некоторые абсолюты, потребность в демонстрации которых была необходима для оздоровления разумно здравомыслящих голов, должны были существовать. Евклидова геометрия была избрана всеми скептиками, кто подозревал, что остальные работы чистого разума, в частности официальная теология, должны быть разрушены геометрией. Ни один человек в здравом уме не осмелился бы оспорить истинность геометрии. Таким образом, воцарилась одна абсолютная истина. Но если есть одна, то почему не две? Но если вдруг какой-то еретик опрокинул бы абсолютизм евклидовой геометрии, как поступил Коперник с астрономией Птолемея, ни один абсолют не устоял бы.