Читаем Магия чисел. Математическая мысль от Пифагора до наших дней полностью

После семидесяти страниц (форматом в четвертую долю листа) непонятных рассуждений Джилорамо Саккери обыденно переходит к наиболее интересному из его новой геометрии, попутно отвлекаясь на невнятные комментарии, что все сказанное ложно. Либо он имел намерение принести в жертву свои доказательства из-за веры в Евклида, либо он не осмелился признаться в своей еретической геометрии. Этот неожиданный отход автора от железной логики неприятно поразил своей несуразностью далекого от религии и церкви Белтрами. Он заподозрил, что такой сильный логик, как Саккери, просто не мог прийти к подобному выводу, не отключив разум. Почему же он притворялся? Ответ не заставит себя ждать: страх. Саккери не посмел заявить, что новая геометрия «истинна». Для церковного начальства Саккери, как и безупречный геометр Евклид, был почти так же неприкосновенен, как и непогрешимый логик Аристотель. Попытка отрицать Евклида была сродни сомнениям в классической логике, с помощью которой основные догматы официальной теологии были распространены на все вечное. Безрассудно храброе заявление, что неевклидова система столь же «истинна», сколь и евклидова геометрия, привело бы к репрессиям и епитимье. По этой причине Коперник геометрии предпочел прибегнуть к хитрости. Воспользовавшись сомнительным шансом, Саккери разгромил свою собственную работу в надежде через это вынужденное предательство растворить ересь в глазах цензоров и пустить ее в печать. Трюк (если это был трюк) сработал. Книга пошла в набор.

Если «Евклид» был настолько ложен, насколько его представил Саккери в отчаянной надежде, что его судьбоносное открытие никогда не исчезнет вместе с ним, все-таки он пролежал на расстоянии вытянутой руки от молодых поколений, не будоража ничью мысль. В новой геометрии Саккери рассуждения столь ясны и убедительны, что практически любой рациональный ум, следуя доказательствам, легко поддался бы соблазну и пришел к кощунственным мыслям. Так или иначе, но книга оказалась под сукном, в интересах сиюминутной безопасности, как и следовало ожидать в условиях консервативной политики. Тема была крайне опасна для некоторой части попечителей, а если в организации происходит раскол, у нее остается мало шансов выжить. Но в такие судьбоносные моменты опасливые люди откладывают на потом свои незапланированные альтернативные умозаключения. Они упускают из виду, что отдельные свободомыслящие умы вне пределов их влияния и власти начнут независимо приходить к объективным открытиям и публиковать их для всемирного обозрения, и таким образом сами у себя крадут славу, которую, возможно, получили бы, будь они хоть немного смелее. Так было с Саккери.

Когда «Евклид» наконец впервые появился на свет в 1889 году, неевклидовы геометрии уже занимали свое место в математической иерархии. Никакого ужасающего всплеска религиозного скептицизма не последовало с их приходом. Даже профессиональные математики не спешили рассуждать о том, к чему приведет сосуществование нескольких обособленных, несовместимых между собой, самодостаточных геометрий для будущего платоновского реализма математических истин, в который практически большинство из них продолжало верить. Кардинальная революция, свергнувшая астрономию Птолемея, прошла практически незамеченной. Свержение абсолютизма Евклида меняло весь образ мыслей, а не только устаревшее описание Солнечной системы. То, что было невозможно представить до построения Саккери своей геометрии, стало работающей теорией для тысяч, чьим занятием было думать, чтобы другие действовали. Математические истины и математические формулировки научных принципов стали чисто земного происхождения, они перестали быть небесными неизбежностями, а просто удобными для людей инструментами. Ни в математике, ни в естествознании больше не осталось никаких абсолютов.

С этого момента утрата веры в вечные истины и абсолюты перекинулась, но не сразу, а исподволь, на логику и метафизику, а от них и на весь авторитаризм. Хвастливое высказывание Хенли наконец-то приобрело значимость: «Я хозяин своей судьбы, я капитан своей души». И фраза «вечный дух свободного ума» приобрела значение. Мозг человека стал свободен, как он того хотел, а человечество теперь получило возможность отбросить бирюльки и стать теми, кем должно быть.

Вероятно, те, кто убрал от греха подальше «Евклида» Саккери, предвидели, что случится со всеми абсолютами, если работа будет напечатана, и испытывали благоговейный страх перед преждевременным претворением в жизнь неизбежного. Другие совершили аналогичную ошибку в отношении революции Коперника. Вместо того чтобы вставать второй раз на грабли, невнимательный инквизитор, ответственный за утрату работы Саккери, должен был реабилитировать своих предшественников, отважно заявив о надвигающейся революции, более подрывной, чем в случае с Коперником. Он мог бы даже наградить Саккери, своего подчиненного, вполне заслуженным титулом Коперника мысли.

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Для юных математиков
Для юных математиков

Вниманию юного, и не очень, читателя предлагается книжная серия, составленная из некогда широко известных произведений талантливого отечественного популяризатора науки Якова Исидоровича Перельмана.Начинающая серию книга, которую Вы сейчас держите в руках, написана автором в 20-х годах прошлого столетия. Сразу ставшая чрезвычайно популярной, она с тех пор практически не издавалась и ныне является очень редкой. Книга посвящена вопросам математики. Здесь собраны разнообразные математические головоломки, из которых многие облечены в форму маленьких рассказов. Книга эта, как сказал Я. И. Перельман, «предназначается не для тех, кто знает все общеизвестное, а для тех, кому это еще должно стать известным».Все книги серии написаны в форме непринужденной беседы, включающей в себя оригинальные расчеты, удачные сопоставления с целью побудить к научному творчеству, иллюстрируемые пестрым рядом головоломок, замысловатых вопросов, занимательных историй, забавных задач, парадоксов и неожиданных параллелей.Авторская стилистика письма сохранена без изменений; приведенные в книге статистические данные соответствуют 20-м годам двадцатого века.

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Математика / Книги Для Детей / Дом и досуг