Читаем Магия математики. Как найти x и зачем это нужно полностью

Мы начинаем с 9, складываем 9 + 8 = 17, отмечаем запоминаемую единицу и вычитаем 9, чтобы получить вторую цифру – 8. Дальше у нас идет 8 + 7 = 15, мы отмечаем еще одну единицу и пишем 15 – 9 = 6. 6 + 6 = 12 – значит, «на ум идет» уже третья единица, – считаем 12 – 9 = 3. И остаток: 3 + 5 = 8. С учетом запомненных единиц получаем 10 973 с остатком 8.

Отступление

Если вам уже нравится деление на 9, попробуйте делить на 91. Возьмите любое двузначное число и просто делите его на 91 без остановки, множа количество знаков после запятой, пока не надоест. И никаких столбиков, никаких калькуляторов! Нет, кроме шуток! Вот, смотрите:

53 ÷ 91 = 0,582417…

Если говорить конкретнее, ответ тут – , где линия над цифрами 582417 означает, что они повторяются до бесконечности. Откуда эти числа берутся? На самом деле это деление ничуть не сложнее умножения исходного двузначного числа на 11. С помощью метода, о котором мы говорили в главе 1, считаем 53 × 11 = 583. Вычитаем из этого числа единицу и получаем первую половину нашего ответа, а именно – 0,582. Вторая половина – это разность, полученная при вычитании первой половины из 999: 999 – 582 = 417. В результате получаем .

Еще один пример – 78 ÷ 91. Здесь 78 × 11 = 858, то есть ответ будет начинаться с 857. Затем 999 – 857 = 142, поэтому 78 ÷ 91 = . Это число нам уже встречалось в главе 1, потому что 78/91 легко упрощается до 6/7.

Метод этот работает, потому что 91 × 11 = 1001. Поэтому в первом примере А так как 1/1001 = , мы получаем повторяющуюся часть нашего ответа из 583 × 999 = 583 000 – 583 = 582 417.

91 = 13 × 7 дает нам отличный способ делить числа на 13, усложняя их, чтобы получить в знаменателе 91. Например, 1/13 = 7/91, а так как 7 × 11 = 077, у нас получается

Точно так же 2/13 = 14/91 = , потому что 14 × 11 = 154.

Магия 10, 11, 12 и модульной арифметики

Многое из того, что мы узнали о девятке, справедливо и в отношении других чисел. Вычисляя вычет по модулю 9, мы, по сути, заменяем числа тем, что осталось от их деления на 9. Не думаю, что для вас это большая новость. Каждый из нас делает это практически каждый день – с тех самых пор, когда мы научились называть время. Допустим, часы показывают ровно 8 (утра или вечера – неважно). Сколько они будут показывать через 3 часа? А через 15 часов? А через 27? А сколько они показывали 9 часов назад? Первые числа, которые возникают в сознании – 11, 23, 35, –1, но стоит нам вспомнить, что речь идет о часах, мы понимаем, что ответ на все эти вопросы будет один и тот же – 11 часов, ведь все заданные промежутки должны считаться от 12. Математики используют для этого такого вот вида запись:



Обобщая, мы можем сказать, что ab (mod 12), где и a, и b отличаются на число, кратное 12. Соответственно, ab (mod 12), если и a, и b при делении на 12 имеют один и тот же остаток. Иными словами, для любого целого значения m мы говорим, что два числа a и b равны (сравнимы) по модулю m, что обозначается как ab (mod m) где и a, и b отличаются на число, кратное m. По сути, это значит, что

ab(modm), еслиa=b+qmпри целом значенииq.

Перейти на страницу:

Похожие книги

Эволюция человека. Книга I. Обезьяны, кости и гены
Эволюция человека. Книга I. Обезьяны, кости и гены

Новая книга Александра Маркова – это увлекательный рассказ о происхождении и устройстве человека, основанный на последних исследованиях в антропологии, генетике и эволюционной психологии. Двухтомник «Эволюция человека» отвечает на многие вопросы, давно интересующие человека разумного. Что значит – быть человеком? Когда и почему мы стали людьми? В чем мы превосходим наших соседей по планете, а в чем – уступаем им? И как нам лучше использовать главное свое отличие и достоинство – огромный, сложно устроенный мозг? Один из способов – вдумчиво прочесть эту книгу. Александр Марков – доктор биологических наук, ведущий научный сотрудник Палеонтологического института РАН. Его книга об эволюции живых существ «Рождение сложности» (2010) стала событием в научно-популярной литературе и получила широкое признание читателей.

Александр Владимирович Марков

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература