Числа эти взяты не просто так: 3141 – первые четыре цифры числа π (см. главу 8), 2718 – первые четыре цифры числа
В чем тут секрет? Начнем с того, что каждое из изначальных четырех чисел кратно 9. А раз вы начинаете с числа, кратного 9, и умножаете его на целое число, ответ тоже будет кратен 9. А еще сумма его цифр должна быть кратна 9. Поэтому надо просто сложить между собой числа, которые вам называют. Неназванная цифра – это число, которое необходимо прибавить к результату, чтобы он стал кратным 9. Например, зритель называет вам цифры 5, 0, 2, 2, 6 и 1. Их сумма равна 16 – до ближайшего числа, кратного 9 – а именно, 18 – не хватает 2. Если вы слышите цифры 1, 1, 2, 3, 5, 8, дающие в сумме 20, то зритель не назвал вам 7 – остаток, который необходимо добавить к 20, чтобы получить 27. А что, если сумма названных вам цифр уже равна 18 – что тогда нужно угадать? Правильно, 9: вы же просили не обводить кружком 0.
Почему же цифры, составляющие числа, кратные 9, в сумме всегда дают числа, тоже кратные 9? Посмотрите на такой пример: число 3456, разложенное на элементы с помощью умножения на 10, выглядит как
Следуя той же логике, любое число, сумма цифр которого кратна 9, само должно быть кратно 9 (и наоборот: любое число, кратное 9, при сложении составляющих его цифр даст нам результат, кратный 9).
Вычисление вычета по модулю 9
А что, если сумма цифр нашего числа все-таки не кратна 9? Возьмем, например, число 3457. Следуя алгоритму, означенному чуть выше, мы можем представить 3457 (сумма цифр которого равна 19) как 3(999) + 4(99) + 5(9) + 7 + 12, то есть 3457 – это 7 + 12 = 19, что чуть больше, чем кратное девятке 18. А если 19 = 18 + 1, значит, и 3457 ровно на единицу больше ближайшего кратного 9 числа. К тому же выводу можно прийти, сложив цифры числа 19, потом – цифры числа 10, то есть вот какая последовательность у нас получается:
Процесс сложения между собой цифр числа и повторение этой операции до тех пор, пока не получится однозначное число, называется
Алгебраически, обозначив цифровой корень числа
где
Обратите внимание, что цифровые корни слагаемых чисел равны 5 и 6, а цифровой корень их суммы (11) равен 2. И совсем не случайно, что цифровой корень результата (134 651) тоже имеет цифровой корень, равный 2. Причина всего это кроется в следующей алгебраической формуле:
Если числа не совпадают, вы наверняка где-то ошиблись. И вот что важно: даже если числа