А вот кое-что еще более интересное. С 1901 по 2099 год через каждые 28 лет календарь повторяется один в один. Знаете, почему? Из 28 лет 7 – всегда високосные, поэтому календарь смещается на 28 + 7 = 35 дней, а 35 – число, кратное 7, что и обеспечивает повторяемость дней недели (закономерность эта нарушится, если мы опустимся ниже 1900 года или поднимемся выше 2100-го, ведь в григорианском календаре они не високосные). Поэтому, просто складывая или вычитая числа, кратные 28, вы можете превратить
То есть какую бы практическую задачу вы ни решали, вы можете превратить нужный вам год в один из тех, что составляют нашу таблицу, и таким нехитрым способом узнать его код. Почему, например, кодом 2017-го будет 0? Да потому что с 2000 года (имеющего код 0), календарь смещается по неделе 17 раз
Шаг 1: Возьмите две последние цифры года (в примере с 2022 годом этими цифрами будут 22).
Шаг 2: Разделите это число на 4. В результате нас интересует только целое, остаток можно проигнорировать (в нашем примере – 22
Шаг 3: Сложите числа из первого и второго шагов (в нашем примере – 22 + 5 = 27).
Шаг 4: Возьмите ближайшее число, кратное 7, которое при этом будет меньше суммы, полученной после третьего шага (это может быть 0, 7, 14, 21 или 28). Вычтите его из этой суммы и узнаете код года (другими словами, сократите число из третьего шага по модулю 7: так как 27 – 21 = 6, кодом 2022 года будет 6).
Обратите внимание, что шаги с 1 по 4 работают для любого года в промежутке с 2000-го по 2099-й; можно значительно упростить себе задачу устного счета, просто вычтя на начальном этапе число, кратное 28, и получив таким образом год в промежутке с 2000-го по 2027-й. 2040 год, например, можно «упростить» до 2012, и шаги с 1-го по 4-й превращаются в элементарное 12 + 3 – 14 = 1. К тому же результату можно прийти, работая непосредственно с 2040: 40 + 10 – 49 = 1.
Алгоритм этот можно использовать не только для двухтысячных годов. Коды месяцев останутся такими же, а вот с кодами годов нужно будет сделать одну небольшую поправку. Код 1900 года будет равен 1. Следовательно, код каждого года в промежутке с 1900-го по 1999-й будет на одну единицу больше, чем их «собратья» в промежутке с 2000-го по 2099-й. То есть если код 2040-го – 1, значит, кодом 1940-го будет 2; а кодом 1922-го, например, будет 7 (ну, или 0), потому что 2022 год обозначается кодом 6. Код 1800 года – 3, 1700-го – 5, 1600-го – 0 (на самом деле на полный цикл у календаря уходит 400 лет, потому что именно четырехсотлетний период имеет 100 – 3 = 97 високосных годов, то есть ровно через 400 лет, день в день, календарь сместится на 400 + 97 = 497 дней, что даст нам абсолютно тот же день недели и то же число, ведь 497 кратно 7).
Хотите узнать, каким днем недели было 4 июля 1776 года? Сначала найдем код 2076 года, для чего вычтем 56 из 2076, а потом посчитаем код 2020-го: 20 + 5 – 21 = 4. Следовательно, код 1776 года будет 4 + 5 = 9 ≡ 2 (mod 7). Таким образом, получается, что по григорианскому календарю 4 июля 1776 года пришлось на
А раз так, может быть, те, кто подписывал Декларацию независимости, просто хотели успеть завершить все перед выходными?