Под конец главы давайте я расскажу вам о еще одном волшебном свойстве числа 9. Загадайте любое число, в котором ни одна цифра не повторяется, при этом идут они от меньшего к большему. Это может быть, например, 12 345, 2358, 369 или 135 789. Умножьте это число на 9 и сложите между собой цифры. В том, что результат будет кратен 9, для нас ничего нового нет – удивительным будет то, что цифры в своей сумме дадут
Фокус сработает, даже если цифры будут повторяться – главное, чтобы они шли от меньшего к большему и чтобы разряд единиц не равнялся разряду десятков. Вот, смотрите:
Так в чем тут секрет? Давайте посмотрим, что происходит, когда мы умножаем на 9 число
Если считать слева направо, то, с учетом того, что
а сумма цифр результата составит
что и требовалось доказать.
Глава номер четыре
Магия счета
Математика с восклицательным знаком!
В самом начале этой книги мы говорили о том, как посчитать сумму всех чисел от 1 до 100. И мы справились – у нас получилось 5050. Также мы нашли замечательную формулу для подсчета суммы первых
93326215443944152681699238856266700490715968264381621468
59296389521759999322991560894146397615651828625369792082
7223758251185210916864000000000000000000000000
В этой главе вы увидите, как использовать такие огромные числа для счета. Они помогут нам узнать, сколько существует способов расставить на книжной полке дюжину книжек (примерно
Когда мы перемножаем все числа от 1 до
Например,
Мне кажется, символ восклицательного знака подходит здесь как нельзя лучше: значение числа
Казалось бы, 0! должен быть равен 0. Но это почему-то не так: 0! = 1. Давайте разберемся, почему. Обратите внимание, что для
Если мы хотим, чтобы наше утверждение оставалось верным для
Итак, факториалы растут очень и очень быстро. Посмотрите сами:
Насколько велики эти числа? Ученые говорят, что количество всех-всех песчинок в мире равняется 10²². А количество всех-всех атомов во Вселенной – 1080
. Так вот, если вы тщательно перемешаете колоду из 52 карт (что, как мы чуть позже узнаем, может быть сделано 52! способами), шансы на то, что в таком порядке они сложатся впервые со времен изобретения карт и никогда больше не сложатся снова, близки к 100 %. И это при условии, что все люди на Земле каждую минуту на протяжении нескольких миллионов лет будут тасовать каждый свою колоду.