Имейте в виду, что
Еще одна не менее популярная в тригонометрии функция – тангенс
. Для углав прямоугольном треугольнике –
Для всех этих формул есть свои специальные «запоминалки». Один мой знакомый, например, любил повторять: «Сильно противный Глеб, который прилег на гриб, так противно прилег». Здесь «СИльно» означает синус, все «ПРОТИВное» – противолежащий катет, «КОторый» – косинус, «ПРИЛег» – прилежащий катет, «ТАк» – тангенс, а слова, начинающиеся с буквы «г» – гипотенузу (то есть получаем подсказку насчет синуса, потом косинуса, а потом и тангенса).
Итак, в треугольнике с длинами сторон 3, 4 и 5 имеем
А что с углом
то есть синус
Так как ∠
То есть если в треугольнике
Кроме синуса, косинуса и тангенса в тригонометрии есть еще три элементарные функции. Используются они, правда, не так часто, как уже известные нам, но почему бы не упомянуть и их? Это секанс
, косеканс и котангенс, и смысл их заключается в том, чтоПриставка «ко-» означает здесь те же отношения дополнения, что и в паре «синус – косинус», а именно: для любого острого угла прямоугольного треугольника sec (90° –
Чтобы найти косинусы, тангенсы и все остальное, достаточно знать значение синуса одного из углов, это очевидно. Но ведь и его (скажем, sin 40°) тоже надо как-то найти, правда? Самый простой способ – воспользоваться калькулятором: просто включаем его и узнаем, что sin 40° = 0,642…. Откуда это значение берется, мы узнаем чуть позже.
Некоторые значения тригонометрических функций встречаются в расчетах настолько часто, что лучше всего их просто запомнить. Вернемся к треугольнику с углами 30°, 60° и 90° и вспомним про соотношение его сторон – 1: √
Стороны же треугольника с углами 45°, 45° и 90° имеют соотношение 1: 1: √
А так как tan
С такими знаниями пора вернуться к подножию нашей горы. Только сначала давайте остановимся у первого попавшегося дерева и попробуем рассчитать его высоту.
Предположим, что мы не дошли до ствола 3 метра и что угол между землей под нашими ногами и верхушкой дерева составляет 50°, как изображено на рисунке. (Определить угол, кстати, можно либо с помощью приложения, которое в наши дни есть на многих смартфонах, либо посредством простого устройства, называющегося
Обозначим высоту буквой
Следовательно,
Теперь пойдем к горе – испытаем первый из наших математических методов. Сложность его в том, что мы даже примерно не сможем прикинуть расстояние до центра подножья – то есть вместе с высотой горы мы получаем уравнение с двумя неизвестными. Предположим, что мы измерили угол от точки, в которой находимся, до вершины и получили 40°, потом отошли на 300 метров дальше и получили уже 32° (см. рисунок). Что нам теперь с этой информацией делать?
Способ 4 (метод тангенсов): Обозначим высоту горы
что можно представить как
что дает нам
Так как
Решается это как
Тригонометрия и окружность