Читаем Математическая планета. Путешествие вокруг света полностью

Цикл, обладающий осевой симметрией второго порядка, проходит через три вершины сетки на каждой стороне квадрата. Это же верно и в случае, когда на каждой стороне находится всего одна вершина.



Если число вершин сетки на каждой стороне квадрата четное, имеем другую разновидность цикла, с осевой симметрией четвертого порядка (относительно поворота на 90°).



За исключением случая, когда на каждой стороне располагается всего одна вершина, различные циклы такого типа (обладающие осевой симметрией четвертого порядка) можно определить для любого числа вершин на стороне квадрата, как четного, так и нечетного. Для сетки размером 4 x 4 это будут две вершины, для сетки размером 7 x 7 — три.



Если число вершин сетки на каждой стороне квадрата четное (сетка состоит из нечетного числа клеток), то не существует цикла, проходящего через все вершины и подобного исходному узлу.



Чтобы получить бесконечный узел, проходящий через все вершины сетки, нужно, чтобы число вершин на каждой стороне квадрата было нечетным, или, что аналогично, число клеток сетки — четным.

Теорема 1: Если сетка состоит из четного числа клеток, полученный узел будет бесконечным, подобно исходному, и будет обладать осевой симметрией второго порядка (относительно поворота на 180°).

Теорема 2: Для любого числа клеток сетки n при n = 2·k или n = 2·k + 1 определимы циклов с осевой симметрией четвертого порядка.

Ранее мы показали, что в сетке из 49 клеток (n = 7 = 2·3 + 1) можно определить три цикла, обладающих осевой симметрией четвертого порядка. В сетке из 16 клеток (16 = (2·2)2) можно определить два таких цикла.


Вариации на тему симметрии


Геометрические узоры встречаются повсеместно и практически у всех народов. Первые геометрические петроглифы появились еще в древнейшие времена — их примеры найдены в пещере Бломбос (ЮАР) или в Раскрашенной пещере на Канарских островах (Испания). Узоры, созданные еще до нашей эры в Древнем Египте, Древней Греции и Византии, имеют более формальный характер. Уже в нашу эру римляне использовали геометрические узоры в мозаиках (расцвет этого вида искусства наблюдался в Венеции до начала эпохи Возрождения). В то же время был создан чисто геометрический римско-византийский узор, обладающий самоподобием (в этом он схож с фракталами).



Римско-византийский узор (ок. 700 года).


Основу этого узора составлял квадрат, разделенный на 16 клеток. Диагонали делят каждую клетку на два равнобедренных прямоугольных треугольника. Один из них окрашивался в серый цвет, другой делился на четыре подобных ему треугольника. Один из этих маленьких треугольников окрашивался в светло-серый цвет, три оставшихся вновь делились на четыре равнобедренных прямоугольных треугольника. Далее каждый из этих трех треугольников окружался еще тремя, таким образом получалось 3·3·16 = 9·16 = 144 новых треугольника. Эти действия могли повторяться бесконечно. На каждом этапе число треугольников утраивалось.



Этот узор обладает зеркальной симметрией вида cm, определяемой параллельными осями симметрии вдоль восходящих диагоналей каждой клетки.

Но есть культура, в которой искусство рисования геометрических узоров достигло поистине невероятных высот. Арабские узоры и мозаики встречаются на территории от Марокко до Индии и от Испании до Танзании. Их удивительную симметрию можно увидеть не только в мечетях, дворцах и медресе, но и в гостиницах, аэропортах и на самолетах. Исламские узоры берут начало в арабских узорах, созданных до 1000 года нашей эры.



Арабский узор (ок. 1200 года)


Этот арабский узор, которым можно целиком замостить плоскость, образован повторением шестиугольника с осевой симметрией относительно поворота на 60°. Основу узора составляет сетка из равносторонних треугольников, сочетание которых и образует основную фигуру, или лейтмотив.



Некоторые узоры отличаются тем, что построены на треугольных, а не прямоугольных сетках, поэтому обладают осевой симметрией относительно поворота на 60° и 120°. Прямой угол в узорах также присутствует, но играет второстепенную роль. В исламской культуре геометрия узоров усложнилась с появлением двойных линий — лент, сплетающихся в виде узлов. Эти узоры двумерны, но мастера, умело играя с особенностями нашего восприятия, создают эффект трехмерности. Равносторонние треугольники сетки образуют бесконечное множество составных фигур, среди которых выделяются шести- и двенадцатиконечная звезда, как в архитектурном ансамбле Альгамбра в Гранаде.



Узор в Альгамбре времен династии Насридов (Гранада, Испания, IX век).

* * *

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Путешествие по Карликании и Аль-Джебре
Путешествие по Карликании и Аль-Джебре

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».

Владимир Артурович Левшин , Эмилия Борисовна Александрова

Детская образовательная литература / Математика / Книги Для Детей / Образование и наука
Математика для любознательных
Математика для любознательных

Эта книга основателя жанра научно-занимательной литературы, российского ученого Я. И. Перельмана объединяет в себе две работы автора: «Занимательная математика» и «Занимательная арифметика». Она ставит целью привить своему читателю вкус к изучению математики, вызвать у него интерес к самостоятельным творческим занятиям и приобщает к миру научных знаний. Книга содержит увлекательные рассказы-задачи с необычными сюжетами на математические темы, любопытными примерами из повседневной жизни, головоломки, шуточные вопросы и опыты - и все это через игру, легко и непринужденно.Постановка задач, их арифметические и логические методы решений и вытекающие из решений выводы вызовут интерес не только у юных начинающих математиков, знакомых лишь с элементами арифметики, но и у хорошо разбирающихся в математике читателей.Авторская стилистика письма соответствует 20-м годам двадцатого века и сохранена без изменений.

Яков Исидорович Перельман

Математика / Образование и наука