Читаем Математическая планета. Путешествие вокруг света полностью

СИММЕТРИЯ И НЕВОЗМОЖНЫЕ МИРЫ

Мы знаем, что стороны улиц наших городов представляют собой параллельные прямые. Но мы не удивляемся, когда видим, как вдали, на горизонте, эти прямые сходятся в одной точке. Из-за особенностей нашего зрения далекие предметы кажутся нам меньше. Сочетание симметрии и технологий может порождать новые миры — невозможные, но отчасти реалистичные. Достаточно взять любую фотографию, отразить ее половину по вертикали или горизонтали и приложить к оригиналу. На двойном изображении мы увидим две параллельные улицы, симметричные друг другу.



Улица в японском городе Канадзава и симметричная ей.

* * *

К сожалению, о том, как были выполнены мозаики Альгамбры, и о том, как строились правильные девятиугольники в то время, известно очень немногое (в XVIII веке Гаусс доказал, что построить правильный девятиугольник при помощи циркуля и линейки невозможно). Остается лишь строить догадки. Впрочем, далее вы увидите, что в некоторых культурах для рисования узоров до сих пор используют те же методы, что и в далеком прошлом.


Индийские орнаменты колам


Каждое утро женщины с юга Индии, особенно из штатов Тамилнад и Керала, проводят у дверей своих домов ритуал: они рисуют на земле рисовой мукой или мелом ряд геометрических фигур, которые затем могут раскрашивать в яркие цвета. Эти фигуры — колам — отличаются большим разнообразием и могут иметь вид как маленьких и простых изображений цветов, так и сложнейших геометрических узоров.

Колам — это не просто искусство. Линии и фигуры в нем обычно строятся на сетке точек, заранее размеченных на земле. Кроме того, колам состоят из меньших фигур, как правило, симметричных и повторяющихся по заданной схеме, которая также определяется формой исходной сетки из точек. На фотографии изображен колам с двумя перпендикулярными осями симметрии, начерченный на основе восьмиугольной сетки из точек.



Женщины рисуют колам в городе Ченнаи, штат Тамилнад (Индия).


Как правило, узоры колам рисуют женщины, вместе с другими работами по дому. Но иногда к ним присоединяются и мужчины — просто для эстетического удовольствия.

Только в одном случае колам должен рисовать мужчина — во время особого ритуала, посвященного богине-матери Бхагавати в штате Керала. Этот ритуал называется Бхагавати севаи, и проводить его может только жрец-мужчина, который и должен нарисовать особый колам — падман (лотос).

Существует два основных вида узоров колам. К первому относятся узоры, подобные изображенному на предыдущей странице. Они состоят из двумерных фигур, заполняющих сетку из точек. Узоры второго типа состоят из одной или нескольких непрерывных линий, которые проходят через все точки сетки и образуют одну или несколько фигур.

Все колам начинаются с построения на земле сетки из точек, расположение которых зависит от свободного места. Колам могут заранее изображаться на бумаге, особенно если речь идет об очень сложных узорах или фигурах больших размеров. Проводить линии, соединяющие точки, нужно без ошибок — исправления не допускаются. Узоры колам не имеют особых названий и обозначаются по принципу подобия — «звезда», «лотос», «кокосовая пальма», «повозка» и так далее. Линии, соединяющие точки, имеют форму восьмерок, или знака бесконечности.



Колам, составленный из элементов меньшего размера, изображенных одной линией.


Сходство со знаком бесконечности не случайно — в этом регионе непрерывные линии подобной формы обозначают бесконечный цикл жизни: рождение, расцвет, увядание.

Тщательно изучив боковые кривые на изображенном выше коламе, мы увидим, в каких случаях их можно изобразить одной линией. Четыре боковые фигуры представляют собой прямоугольники и изображены на сетках точек размерами 2 x 7. Все точки соединены одной линией. Аналогично можно соединить точки в сетках размерами 2 х 3 и 2 х 5.



Но провести такую линию на сетке 2 х 4 не удастся. В этом случае потребуются две линии, симметричные по вертикали и горизонтали.



Можно ли соединить все точки сетки одной линией, зависит от того, сколько столбцов в сетке — четное это или нечетное число. Пронумеруем столбцы слева направо и увидим, что кривая на сетках размером 2 х З, 2 х 5 и 2 х 7 проходит через столбцы под номерами: {1, 2, 3}, {1, 2, 4, 3} и {1, 2, 4, 6, 7}. Для четного числа столбцов подобное невозможно.

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Путешествие по Карликании и Аль-Джебре
Путешествие по Карликании и Аль-Джебре

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».

Владимир Артурович Левшин , Эмилия Борисовна Александрова

Детская образовательная литература / Математика / Книги Для Детей / Образование и наука
Математика для любознательных
Математика для любознательных

Эта книга основателя жанра научно-занимательной литературы, российского ученого Я. И. Перельмана объединяет в себе две работы автора: «Занимательная математика» и «Занимательная арифметика». Она ставит целью привить своему читателю вкус к изучению математики, вызвать у него интерес к самостоятельным творческим занятиям и приобщает к миру научных знаний. Книга содержит увлекательные рассказы-задачи с необычными сюжетами на математические темы, любопытными примерами из повседневной жизни, головоломки, шуточные вопросы и опыты - и все это через игру, легко и непринужденно.Постановка задач, их арифметические и логические методы решений и вытекающие из решений выводы вызовут интерес не только у юных начинающих математиков, знакомых лишь с элементами арифметики, но и у хорошо разбирающихся в математике читателей.Авторская стилистика письма соответствует 20-м годам двадцатого века и сохранена без изменений.

Яков Исидорович Перельман

Математика / Образование и наука