Читаем Математическая планета. Путешествие вокруг света полностью

Структура родственных отношений варлпири описывается рядом правил. Каждый абориген принадлежит к одной из восьми групп. Так, группа, к которой принадлежат дети от брака, отличается от групп, к которым принадлежат родители, и определяется по материнской линии. Если мы обозначим группы числами от 1 до 8, то дочь женщины из группы 4 будет принадлежать группе 2, ее дочь — группе 3, дочь последней — группе 1. Аналогично определяются взаимосвязи между группами 5, 6, 7 и 8. Следовательно, по материнской линии существует два непересекающихся цикла четвертого порядка, {1, 4, 2, 3} и {3, 7, 6, 8}.



Циклы, определяемые по материнской линии в структуре родственных отношений австралийских аборигенов варлпири.


Еще одно правило заключается в том, что браки не могут заключаться в пределах одной группы. В следующей геометрической модели структуры родства браки обозначены пунктирными линиями.



Браки в структуре родственных отношений варлпири.


Так как группы, к которым принадлежат мужчины, определяются на основе женских, то если мужчина из группы 1 женится на женщине из группы 5, их сын будет принадлежать к группе 7. Следовательно, он женится на женщине из группы 3, а сын от их брака вновь будет принадлежать к исходной группе 1. По отцовской линии определено четыре цикла второго порядка: {1, 7}, {2, 8}, {3, 6} и {4, 3}.



Циклы, определяемые по отцовской линии в структуре родственных отношений варлпири.


Таким образом, имеем два цикла четвертого порядка по материнской линии и четыре цикла второго порядка по отцовской линии, которые в сумме охватывают все восемь групп структуры родственных отношений. Упомянутые восемь групп могут объединяться разными способами и образовывать множества, для которых определяются различные аспекты жизни в обществе. К примеру, группы, описывающие права наследования, отличаются от групп, описывающих допустимые браки или объединения для проведения каких-либо работ.

Формальное математическое описание этой структуры есть не что иное, как практическое применение понятия, которое в теории групп называется группой изометрии восьмого порядка. Чтобы проиллюстрировать эту идею, покажем, как изометрии квадрата образуют группу изометрии восьмого порядка.

Изометрия — это преобразование, не изменяющее форму и размер объектов.

На плоскости определены три изометрических преобразования: параллельный перенос, поворот и отражение (осевая симметрия). Параллельный перенос попросту меняет положение фигуры, поворот заключается во вращении фигуры вокруг неподвижной точки, называемой центром, отражение представляет собой осевую симметрию относительно отрезка. Какие из этих преобразований можно применить к квадрату так, чтобы результат преобразования совпадал с исходной фигурой?

Наименьший угол поворота, при котором квадрат остается неизменным, равен 90°. Такой поворот представляет собой преобразование четвертого порядка:

* * *

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Путешествие по Карликании и Аль-Джебре
Путешествие по Карликании и Аль-Джебре

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».

Владимир Артурович Левшин , Эмилия Борисовна Александрова

Детская образовательная литература / Математика / Книги Для Детей / Образование и наука
Математика для любознательных
Математика для любознательных

Эта книга основателя жанра научно-занимательной литературы, российского ученого Я. И. Перельмана объединяет в себе две работы автора: «Занимательная математика» и «Занимательная арифметика». Она ставит целью привить своему читателю вкус к изучению математики, вызвать у него интерес к самостоятельным творческим занятиям и приобщает к миру научных знаний. Книга содержит увлекательные рассказы-задачи с необычными сюжетами на математические темы, любопытными примерами из повседневной жизни, головоломки, шуточные вопросы и опыты - и все это через игру, легко и непринужденно.Постановка задач, их арифметические и логические методы решений и вытекающие из решений выводы вызовут интерес не только у юных начинающих математиков, знакомых лишь с элементами арифметики, но и у хорошо разбирающихся в математике читателей.Авторская стилистика письма соответствует 20-м годам двадцатого века и сохранена без изменений.

Яков Исидорович Перельман

Математика / Образование и наука