Читаем Математическая планета. Путешествие вокруг света полностью

Если шарик останавливается в центральной клетке под номером 20, все ставки уходят в банк. При ставках игроки не учитывают этот исход, так как клетки в таблице для ставок имеют номера от 1 до 12. С точки зрения игрока, ставящего на одну из 12 клеток, вероятность выигрыша равна:

Р = 1/12 = 8,33 %.

Однако реальная вероятность несколько меньше, так как в таблице ставок не учитывается возможный выигрыш банка:

Р = 4/49 = 8,16 %.

Рассмотрим таблицу ставок и попытаемся ответить, в каком случае выигрыш вероятнее: если мы поставим на два числа по горизонтали или по вертикали? Какая комбинация выиграет с большей вероятностью — 1–2 или 1–5? Комбинация 1–2 выигрывает, если выпадает красный или зеленый треугольник. Комбинация 1–5 выигрывает, если выпадает треугольник или круг красного цвета. Так как красных треугольников столько же, сколько зеленых (по 4), и столько же, сколько черных кругов и черных треугольников (по 4), вероятность выигрыша будет одинаковой:

Р(1,2) = Р(1,5) = 8/49 = 16,3 %.

Игроки понимают, что ставить на единственный исход слишком рискованно, и чаще ставят сразу на два числа.

Несколько вопросов, связанных с игрой, имеют отношение к доске, на которую бросают шарик. Первый вопрос касается формы самой доски: почему она квадратная? Второй вопрос имеет отношение к числу клеток: почему размер доски равен 7 x 7? Почему доска не имеет форму прямоугольника, треугольника, шестиугольника или круга? Разве нельзя играть на квадратной доске, разделенной на 25, 36 или 100 клеток?

Форма доски влияет на траекторию движения шарика, которая определяется направлением броска и отскоками от краев доски. Вопрос о форме доски относится к геометрии, вопрос о числе клеток — к алгебре. Теоретически возможны неслучайные броски, например когда траектория шарика представляет собой квадрат, соединяющий середины сторон доски. Такая траектория возможна в случае, когда мы бросаем шарик из любой точки над одной из сторон доски под углом в 45° к ней.

Но все это лишь теория — благодаря вогнутой форме клеток всякий раз, когда шарик не прокатывается точно по центру клетки, он отклоняется от траектории. В результате траектория оказывается случайной, и исход броска предугадать нельзя. Именно поэтому траектории, подобные ломаной линии, изображенной на доске серого цвета на рисунке ниже, невозможны.



Смоделировать траекторию шара на доске чисто математическими методами нельзя, для этого следует учесть физические факторы, в частности силу трения и силы, обусловленные вогнутой формой клеток, под действием которых траектория шарика при прохождении над клеткой меняется. Необходимость учитывать множество переменных крайне усложняет задачу, и можно считать, что исход игры является случайным.

Вопрос о числе клеток на доске, как мы уже говорили, относится к алгебре. Так как дано три фигуры и четыре цвета, образующие 12 сочетаний, и к ним нужно добавить еще одну клетку (когда шарик попадает на нее, все ставки уходят в банк), число клеток С должно быть на единицу больше числа, кратного 12:


Учитывая, что доска должна иметь квадратную форму, С также должно быть квадратом натурального числа. Искомый результат достигается, если мы рассмотрим квадраты чисел, кратных 6, увеличенные или уменьшенные на единицу:

(6·λ ± 1)2 = 36·λ2 ± 12λ + 1 = 12λ·(3λ ± 1) + 1 = 1 + число, кратное 12.

Число клеток на доске может быть и другим, но в этом случае вероятность выигрыша будет либо слишком низкой (при С > 49), либо слишком высокой (С = 25).



Игра кпелле


В своей книге «Африка считает» Клаудия Заславски описывает игру, распространенную в народе кпелле. Игра начинается с того, что 16 камушков раскладываются в два ряда по восемь. Один из игроков загадывает камень, после чего другой игрок должен угадать, какой камень выбрал первый. Для этого он может не более четырех раз спросить, в каком из двух рядов находится выбранный камень. После каждого ответа второй игрок может переставлять камни из ряда в ряд.

Камни необязательно должны быть одинаковыми — для удобства их можно раскрашивать в разные цвета.



Чтобы одержать победу, нужно правильно переставлять камни после каждого ответа на вопрос. Допустим, что первый игрок выбрал камень под номером 13, но мы этого не знаем. Мы видим два ряда камней и спрашиваем: в каком ряду выбранный камень? Первый игрок ответит: в нижнем. Поменяем местами камни, стоящие на нечетных местах.



Повторив вопрос, мы узнаем, что теперь выбранный камень находится в верхнем ряду. Так как ранее камень располагался в другом ряду, мы знаем, что он принадлежит группе {9, 11, 13, 13}. Теперь переставим половину камней из этой группы, к примеру поменяем местами



Наш соперник ответит, что камень по-прежнему находится в первом ряду. Следовательно, он выбрал камень под номером 13 или 13. Переставим один из двух этих камней, например поменяем местами 13 и 5.



Выбранный нашим противником камень оказался во втором ряду, следовательно, мы можем ответить: камень номер 13.

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Путешествие по Карликании и Аль-Джебре
Путешествие по Карликании и Аль-Джебре

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».

Владимир Артурович Левшин , Эмилия Борисовна Александрова

Детская образовательная литература / Математика / Книги Для Детей / Образование и наука
Математика для любознательных
Математика для любознательных

Эта книга основателя жанра научно-занимательной литературы, российского ученого Я. И. Перельмана объединяет в себе две работы автора: «Занимательная математика» и «Занимательная арифметика». Она ставит целью привить своему читателю вкус к изучению математики, вызвать у него интерес к самостоятельным творческим занятиям и приобщает к миру научных знаний. Книга содержит увлекательные рассказы-задачи с необычными сюжетами на математические темы, любопытными примерами из повседневной жизни, головоломки, шуточные вопросы и опыты - и все это через игру, легко и непринужденно.Постановка задач, их арифметические и логические методы решений и вытекающие из решений выводы вызовут интерес не только у юных начинающих математиков, знакомых лишь с элементами арифметики, но и у хорошо разбирающихся в математике читателей.Авторская стилистика письма соответствует 20-м годам двадцатого века и сохранена без изменений.

Яков Исидорович Перельман

Математика / Образование и наука